YEAR 2 (2017) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE Alamance County, North Carolina DMS Project No. 96312 Full Delivery Contract No. 5791

> CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – May-October 2017

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

January 2018

YEAR 2 (2017) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791

> CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – May-October 2017

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

January 2018

Table of Contents

1.0	EXECUTIVE SUMMARY1
2.0	PROJECT SUMMARY
3.0	METHODOLOGY
3.1	Streams7
3.2	Vegetation
3.3	Wetland Hydrology9
3.4	Biotic Community Change
4.0	REMEDIAL ACTION PLAN
4.1	Stream
4.2	Vegetation
5.0	REFERENCES

Appendices

APPENDIX A. PROJECT BACKGROUND DATA AND MAPS

Figure 1. Site Location
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figure 2. Current Conditions Plan View
Tables 5A-5E. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Vegetation Monitoring Photographs
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
Table 10a-b. Supplemental Vegetation Transect Data
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Substrate Plots
Table 11a-11e. Baseline Stream Data Summary
Table 12a-12f. Monitoring Data
APPENDIX E. HYDROLOGY DATA
Table 13. UT3 Channel Evidence
Stream Gauge Graph
Table 14. Verification of Bankfull Events
Groundwater Gauge Graphs
Table 15. Groundwater Hydrology Data
APPENDIX F. BENTHIC DATA
Results
Habitat Assessment Data Sheets
APPENDIX G. REMEDIAL ACTION PLAN
APPENDIX F. INVASIVE SPECIES TREATMENT LOGS

1.0 EXECUTIVE SUMMARY

Monitoring Year 2 (2017), of the Aycock Springs Stream and Wetland Mitigation Site (Site), showed a continued trend towards long-term stability and success of the project. In October of 2017, the NC IRT released Yr. 1 monitoring credits as proposed without condition.

Year 2 (2017) stem count measurements were performed on July 25, 2017, and showed a Site average of 379 planted stems per acre (excluding livestakes) and 494 stems per acre when including natural recruits but excluding livestakes. Twelve of the fourteen individual vegetation plots met success criteria based on planted stems alone. When including naturally recruited stems of box elder (*Acer negundo*) and elm (*Ulmus* sp.), plot 13 was above success criteria.

Five additional temporary 50-meter by 2-meter or 25-meter by 4-meter vegetation survey transects were established in 2017 in areas of replanting. Stem counts were performed in April and again in October, with October results reporting an average density of 477 stems per acre. Bare root planting conducted after construction continues to struggle in areas where remedial planting occurred. However, monitoring efforts, do indicate the remedial planting has been successful. RS is not proposing additional replanting or remedial action for vegetation at this time but will continue to use random linear vegetation plots to help assist in vegetation monitoring efforts.

Axiom Environmental performed Year 2 (2017) stream measurements on April 19th and 20th. As a whole, monitoring measurements indicate minimal changes in the cross-sections as compared to Yr. 1 (2016) data. The channel geometry compares favorably with the proposed conditions as outlined in the detailed mitigation plan and as constructed.

Immediately after construction and before ground cover established, multiple heavy rain events (2+ inches) caused some sedimentation in the streambed. This aggradation can be seen in several of the UT-1 and UT-2 cross-sections and noted during the 2016 monitoring year review. Both visual and physical monitoring of the reaches did not indicate further issues, sediment transport appears to have naturalized, and adjacent riparian areas have stabilized.

The above-mentioned rain events were also responsible for moderate bed erosion of two rifles, approximately 30 feet in length near UT-1 cross-section 9. Streambed erosion was noted shortly after asbuilt measurements were taken. RS created and implemented a remedial action plan during late winter of 2016/2017 (see Section 3.0). These repairs appeared stable during Year 2 (2017) monitoring and will continue to be monitored during subsequent monitoring years as will sediment transport within the UT-1 and UT-2.

All in-stream structures are intact and functioning as designed and no stream areas of concern were identified during Year 2 (2017) monitoring. As part of the stream morphology analysis (Table 12a-f, Appendix D), bank height ratios were calculated for each cross-section. This value shows the extent of aggradation and/or down-cutting in the streambed. Several cross-sections exhibited small variation in bank height ratio during Year 2 (2017). Results are summarized and discussed in Section 3.0 of this report and further detailed on the specific cross-section details located in Appendix D.

During the fall/winter, monthly visual monitoring efforts revealed the establishment of a beaver dam within the Enhancement-II reach of Travis Creek, between the outfalls of UT-3 and 4. RS is working with the landowner on trapping resident beaver over the winter of 2017/2018 and will physically remove the dam just before the 2018 growing season. No issues with cattle intrusion or fence failure were observed during Yr. 2 monitoring efforts.

2.0 PROJECT SUMMARY

The Aycock Springs Stream and Wetland Mitigation Site (Site) encompasses approximately 13 acres located roughly 1.5 miles north of Elon and Gibsonville in western Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002030010 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Prior to construction, the Site consisted of agricultural land used for livestock grazing, hay production, and timber harvest. Streams were cleared, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock and timber harvest activities. Stream impacts in Travis Creek also occurred due to a breached dam that impounded water during storm events. In addition, streamside wetlands were drained by channel incision, soil compaction, the loss of forest vegetation, and land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site include the following.

- Streams have a Best Usage Classification of WS-V, NSW
- Located in a Targeted Local Watershed and within the NCDMS Travis, Tickle, Little Alamance Local Watershed Planning (LWP) Area
- Travis Creek is listed on the NCDENR 2012 303(d) list for ecological/biological integrity
- Immediately south and abutting the Site is a property identified in the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008) as a target property for wetland restoration and streambank enhancement/conservation
- Immediately west of the Site is a large tract associated with Guilford County open space

Based on the *Cape Fear River Basin Restoration Priorities Report 2009* (NCEEP 2009) and the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008), Targeted Local Watershed 03030002030010 is not meeting its designated use of supporting aquatic life. Agricultural land use appears to be the main source of stress in the Hydrologic Unit, as well as land clearing and poor riparian management. This project will meet the eight priority goals of the Travis, Tickle, Little Alamance Local Watershed Plan (LWP) including the following.

- 1) Reduce sediment loading
- 2) Reduce nutrient loading
- 3) Manage stormwater runoff
- 4) Reduce toxic inputs
- 5) Provide and improve instream habitat
- 6) Provide and improve terrestrial habitat
- 7) Improve stream stability
- 8) Improve hydrologic function

The following six goals were identified by the Stakeholder group of the Travis, Tickle, Little Alamance LWP Phase I assessment which address the water quality impacts and watershed needs in all of the Little Alamance, Travis, Tickle watersheds in 2006.

- 1) Increase local government awareness of the impacts of urban growth on water resources
- 2) Strengthen watershed protection standards
- 3) Improve water quality through stormwater management
- 4) Identify and rank parcels for retrofits, stream repair, preservation, and/or conservation
- 5) Assess aquatic health to identify stressors that are the most likely causes of poor biological conditions
- 6) Meet requirements of outside funding sources for implementation of projects

The following table summarizes the project goals/objectives and proposed functional uplift based on restoration activities and observations of two reference areas located in the vicinity of the Site. Goals and objectives target functional uplift identified in the Travis, Tickle, Little Alamance LWP and based on stream/wetland functional assessments developed by the regulatory agencies.

Project Goal/Objective	How Goal/Objective will be Accomplished				
Improve Hydrology					
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows				
Restore Wooded Riparian Buffer	Planting a woody riparian buffer				
Restore Stream Stability					
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Providing proper channel width and depth, stabilizing channel banks, providing gravel/cobble substrate, planting a woody riparian buffer, and removing cattle				
Improve Stream Geomorphology					
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring				
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation				
Increase Subsurface Storage and Retention	Raising the stream bed elevation and rip compacted soils				
Improve Water Quality					
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer				
Increase Thermoregulation	Planting a native, woody riparian buffer				
Reduce Stressors and Sources of Pollution	Removing cattle and other agricultural inputs				
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, and restoring appropriate inundation/duration				
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Raising the stream bed elevation, restoring overbank flows, and planting with woody vegetation				
Restore Habitat					
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer				
Restore Stream-side Habitat	Planting a woody riparian buffer				
Improve Vegetation Composition and Structure					

Project Goals and Objectives

Project construction was completed April 6, 2016 and planting was completed April 8, 2016. Site activities included the restoration of perennial and intermittent stream channels, enhancement (Level II) of perennial stream channel, and re-establishment of riparian wetlands. Priority I restoration of intermittent channels at the Site is imperative to provide significant functional uplift to Site hydrology, water quality, and habitat, in addition to restore adjacent streamside, riparian wetlands. A total of **3581.1 Stream Mitigation Units** (SMUs) and **0.5 Riparian Wetland Mitigation Units** (WMUs) are being provided as depicted in the following table.

Stream Mitigation Type	Perennial Stream (linear feet)Intermittent Stream (linear feet)		Ratio	Stream Mitigation Units
Restoration	3147	90	1:1	3237
Restoration (See Notes below)**		122	1:5:1	81.3
Enhancement (Level II)	657		2.5:1	262.8
TOTAL	3804	212		3581.1
Wetland Mitigation Type	Acreage	Ratio	-	n Wetland tion Units
Riparian Re-establishment	0.5	1:1	0.5	
Riparian Enhancement	1.5*			
TOTAL	2.0		0.5	

* Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

** Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation have been removed from credit generation.

In addition, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio (1.5:1). On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

Project Goal/Objective	Stream Success Criteria				
Improve Hydrology					
Restore Floodplain Access	Two overbank events in separate monitoring years will be documented during the monitoring period.				
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.				
Restore Stream Stability	Cross-sections, monitored annually, will be compared to as-built measurements to determine channel stability and maintenance of channel geomorphology.				
Improve Stream Geomorphology	Convert stream channels from unstable G- and F-type channels to stable E- and C- type stream channels.				
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and attaining				
Restore Appropriate Inundation/Duration	Wetland and Vegetation Success Criteria.				
Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions.				
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Pebble counts documenting coarsening of bed material from pre- existing conditions of sand and silt to post restoration conditions of gravel and cobble.				

Improve Water Quality				
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria (Sections 2.3 and 2.2)			
Increase Thermoregulation	Attaining Vegetation Success Criteria (Section 2.2).			
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.			
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria (Section 2.2)			
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Documentation of two overbank events in separate monitoring years and attaining Vegetation Success Criteria (Section 2.2)			
Restore Habitat				
Restore In-stream Habitat	Pebble counts documenting coarsening of bed material from pre- existing conditions of sand and silt to post restoration conditions of gravel and cobble, and attaining Vegetation Success Criteria (Section 2.2)			
Restore Stream-side Habitat	Attaining Vegetation Success Criteria (Section 2.2)			
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria (Section 2.2)			

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland re-establishment should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

|--|

Project Goal/Objective	Wetland Success Criteria					
Improve Hydrology						
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.					
Increase Surface Storage and Retention						
Restore Appropriate Inundation/Duration	Two overbank events in separate monitoring years, and attaining Wetland and Vegetation Success Criteria.					
Increase Subsurface Storage and Retention	additing from and regention success enteria.					
Improve Water Quality						
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria.					
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.					
Increase Removal and Retention of Pathogens,	Removal of cattle, documentation of two overbank events in					

Particulates (Sediments), Dissolved Materials	separate monitoring years, and attaining Vegetation Success				
(Nutrients), and Toxins from the Water Column	Criteria.				
Increase Energy Dissipation of Overbank/Overland	Documentation of two overbank events in separate monitoring				
Flows/Stormwater Runoff	years, and attaining Vegetation Success Criteria.				
Restore Habitat					
Restore Stream-side Habitat	Attaining Vacatation Suggess Criteria				
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.				

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. This will be confirmed annually by soil temperatures and/or bud burst. The growing season will be initiated each year on the documented date of biological activity. Photographic evidence of bud burst and field logs of date and temperature will be included in the annual monitoring reports.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2016 (Year 1)		April 17*-October 22 (198 days)	19 days
2017 (Year 2)	Bud burst on red maple (<i>Acer</i> <i>rubrum</i>) and soil temperature of 58°F documented on February 28, 2017	February 28-October 22 (237 days)	23 days
2018 (Year 3)			
2019 (Year 4)			
2020 (Year 5)			

Summary of Monitoring Period/Hydrology Success Criteria by Year

*Gauges were installed on May 5 during year 1 (2016), so April 17 was used as the start of the growing season (NRCS).

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

3.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the US Army Corps of Engineers (USACE) April 2003 guidance (*Stream Mitigation Guidelines*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. Monitoring reports for years 4 and 6 will include photo documentation of stream stability and wetland hydrology monitoring data. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems (RS) may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team (NC IRT). Monitoring will be conducted by Axiom Environmental, Inc (AXE). Annual monitoring reports of the data collected will be submitted to the NCDMS by RS no later than December 31 of each monitoring year data is collected.

3.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) bank height ratio, and 7) entrenchment ratio. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in years 1-3, 5, and 7 of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area.

Year 2 (2017) Stream measurements were performed April 19-20. As a whole, monitoring measurements indicate minimal changes in the cross-sections as compared to as-built and Year 1 data. The channel geometry compares favorably with the proposed conditions as set forth in the detailed mitigation plan and as constructed.

Immediately after construction and before ground cover established, multiple heavy rain events (2+ inches) caused some sedimentation in the streambed. This aggradation can be seen in several of the UT-1 and UT-2 cross-sections and noted during the 2016 monitoring year review. Both visual and physical monitoring of the reaches did not indicate further issues, sediment transport appears to have naturalized, and adjacent riparian areas have stabilized.

The above-mentioned rain events were also responsible for moderate bed erosion of two rifles, approximately 30 feet in length near UT-1 cross-section 9. Streambed erosion was noted shortly after asbuilt measurements were taken. RS created and implemented a remedial action plan during late winter of 2016/2017 (see Section 3.0). These repairs appeared stable during Year 2 (2017) monitoring and will continue to be monitored during subsequent monitoring years as will sediment transport within the UT-1 and UT-2. As part of the stream morphology analysis (Table 12a-f, Appendix D), bank height ratios were calculated for each cross-section. This value shows the extent of aggradation and/or down-cutting in the streambed. Several cross-sections exhibited small variation in bank height ratio during Year 2 (2017). These are summarized and discussed in the table below:

XS #	Reach	BHR	Notes
2	Travis Cr	1.04	
4	Travis Cr	1.04	
5	Travis Cr		Sediment deposition in pool appears natural and is not expected to lead to instability.
7	Travis Cr		Sediment deposition in pool appears natural and is not expected to lead to instability.
11	Travis Cr	1.06	
12	Travis Cr	1.03	
13	Travis Cr		Sediment deposition in pool appears natural and is not expected to lead to instability.
8 and 9	UT 1		Cross sections 8 and 9 (UT 1) are located in the vicinity of a bed material repair. Additional bed material was added by hand in this reach.
13	UT 1		Point bar development appears stable after years 1 and 2 monitoring.
16	UT 1		Sediment transport appears to be natural and has stabilized during years 1 and 2 monitoring. No problems appears to be occurring in this reach.
17	UT 1	1.14	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
18	UT 1	1.33	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
19	UT 3		Point bar development appears stable after years 1 and 2 monitoring.
21	UT 4		Point bar development appears stable after years 1 and 2 monitoring.
23	UT 5	1.17	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Across the site, all in-stream structures are intact and functioning as designed. No stream areas of concern were identified during Year 2 (2017) monitoring. Tables for annual quantitative assessments are included in Appendix D.

3.2 Vegetation

After planting was completed on April 8, 2016, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. For quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Year 2 (2017) stem count measurements were performed on July 25, 2017 and indicate an average of 379 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is meeting vegetation success criteria. Twelve of the fourteen individual vegetation plots met success criteria based on planted stems alone. When including naturally recruited stems of box elder (*Acer negundo*) and elm (*Ulmus* sp.), plot 13 was above success criteria. Year 2 (2017) vegetation plot information can be found in Appendix C.

Year 1 (2016) vegetation data showed clearly that bare root planting did not take well and success criteria were not being met. In a proactive approach, RS worked with Carolina Silvics, on developing a remedial action plan in the late fall of 2016. During the week of December 20th, 2016, RS implemented that plan by planting 1,030 containerized trees, consisting of 755 1-gallon pots and 275 3-gallon pots. Specific species planted included the following: *Betula nigra, Fraxinus pennsylvanica, Platanus occiendentalis, Quercus falcata, Quercus nigra, Quercus palustris, Quercus phellos, and Quercus rubra*. The remedial planting plan report detailing location of planting and density is provided in Appendix G.

Five additional temporary 50-meter by 2-meter or 25-meter by 4-meter vegetation survey transects were established in 2017 in areas of replanting. Stem counts were performed in April and again in October, with October results reporting an average density of 477 stems per acre. Bare root planting conducted after construction continues to struggle in areas where remedial planting occurred. However, monitoring efforts, do indicate the remedial planting has been successful. RS is not proposing additional replanting or remedial action for vegetation at this time but will continue to use random linear vegetation plots to help assist in vegetation monitoring efforts.

3.3 Wetland Hydrology

Three groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). A surface water gauge has been installed in Tributary 3 to monitor flow regime of the tributary. Approximate locations of gauges are depicted on Figure 2 (Appendix A). An on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and floodplain crest gauges will confirm overbank flooding events.

All groundwater gauges were successful in year 2 (2017) (Appendix E).

3.4 Biotic Community Change

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track the changes during the monitoring period. The benthic macroinvertebrate community will be sampled using NCDWQ protocols found in the *Standard Operating Procedures for Benthic Macroinvertebrates* (NCDWQ 2006) and *Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects* (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with postconstruction restored conditions.

Two benthic macroinvertebrate monitoring locations will be established within restoration reaches. Postrestoration collections will occur in the approximate location of the prerestoration sampling. Benthic macroinvertebrate samples will be collected from individual reaches using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Preproject biological sampling occurred on June 26, 2014; postproject monitoring will occur in June of monitoring years 2-5.

Identification of collected organisms will be performed by personnel with North Carolina Division of Water Resources (NCDWR) or by a NCDWR certified laboratory. Other data collected will include D50 values/NCDWR habitat assessment forms. Biological sampling for year 3 (2017) occurred on June 15, 2017. The samples were sent to Pennington and Associates, a NCDWR certified laboratory, for identification and analysis. The results and Habitat Assessment Dataforms are included in Appendix F.

4.0 **REMEDIAL ACTION PLAN**

A remedial action plan was developed in order to address stream and vegetation problem areas observed during Year 1 (2016) monitoring. 20107 monitoring efforts of the remedial actions yielded favorable results. Vegetation establishment is treading towards meeting Year 7 success criteria and sediment transport appears to have naturalized across the Site.

The completed remedial action report can be found in Appendix G.

4.1 Stream

The observed degradation in and adjacent to cross-sections 9 and 10 on UT-1 encompasses approximately 12 linear feet and 15 linear feet of stream, respectively (<1 percent of the project length). As noted above, bed material placed during construction was too fine. All of UT-1 used bed material harvested on-site. The material used along these stream reaches was too fine and washed from the riffles during heavy rainfall events, resulting in minor bed scour and a small, less than 6 inch head cut beginning to develop at the top of riffle. Suitable sized channel bed material was installed on February 23, 2017 at the proper elevation in the two riffles within UT-1. Bed material was installed such that bank toe protection is provided and planting with willow stakes will occur. Bank toe protection designates that channel bed material will extend up the lower one-third of the bank. The riffle will be monitored by established cross-sections 9 and 10.

4.2 Vegetation

Multiple factors are contributing to poor vegetative success; a later than desired initial bare-root planting, heavy herbaceous competition primarily from fescue (Site was previously a cattle pasture), and sporadic rain events, which left upland areas of the site dry for extended periods of the growing season. On site observations do indicate a greater survival of planted species within riparian areas. Upland areas of the site are where survival rates were low.

The remedial action plan supplemented the bare-root planting over 5.44 acres with 1030 additional trees (755 1-gallon pots and 275 3-gallon pots). The remedial action plan figure (Appendix G) details the areas that received remedial planting along with density and number of species being placed into vegetation plots. Working with Carolina Silvics, RS acquired and re-planted identified areas during the week of December 20th, 2016. Species of planted tree included *Betula nigra*, *Fraxinus pennsylvanica*, *Platanus occiendentalis*, *Quercus falcata*, *Quercus nigra*, *Quercus palustris*, *Quercus phellos*, and *Quercus rubra*.

It should be noted that vegetation plot 13 is located within an existing wooded area and has a number of large natural recruit species (box elder and American elm).

5.0 **REFERENCES**

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.

- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, NC
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

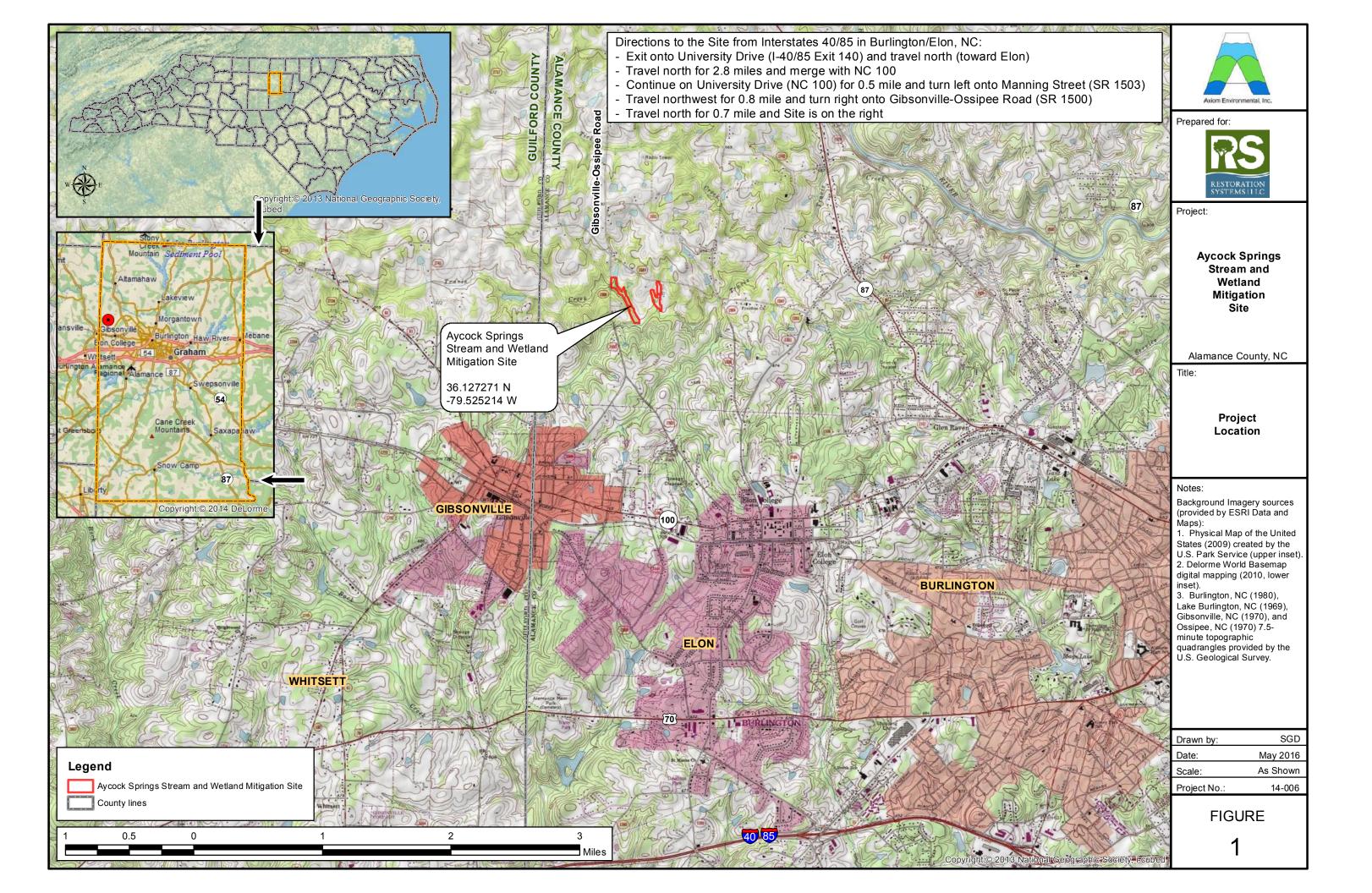

Figure 1. Vicinity Map

Table 1. Project Components and Mitigation Credits

Table 2. Project Activity and Reporting History

Table 3. Project Contacts Table

Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation CreditsAycock Springs Mitigation Site

Mitigation Credits							
Stream Stream			Riparian Wetland		Nonriparian Wetland		
Restoration	Enhancemen	t	Re	-establishment			Re-establishment
3237	344.1			0.5			
			Projects	Components		•	
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment
UT 1 Station 10+04 to 23+21	1173	PI	Restoration	1317-24= 1293	1:1	1293	24 lf of UT 1 is located outside of easement and is not credit generating
UT 2 Station 10+00 to 16+75	723	PI	Restoration	675	1:1	675	
UT 3 Station 10+00 to 11+22	147	PI	Restoration	122	1.5:1	81.3	*** The upper 122 linear feet of channel is in a violation area and is generating credit at a reduced ratio of 1.5:1
UT 3 Station 11+22 to 12+12	16	PI	Restoration	90	1:1	90	
UT 4 Station 10+00 to 14+13	448	PI	Restoration	413-107= 306	1:1	306	****The upper 107 linear feet of channel is in a violation area and is not credit generating
Travis Creek Station 10+00 to 15+78	578		EII	578-20= 558	2.5:1	223.2	The upper 20 linear feet of Travis Creek is within a powerline easement and is not credit generating
Travis Creek Station 15+78 to 17+87	274	PII	Restoration	209	1:1	209	
Travis Creek Station 17+87 to 18+86	99		EII	99	2.5:1	39.6	
Travis Creek Station 23+71 to 30+35	936	PI	Restoration	664	1:1	664	

Table 1. Project Components and Mitigation Credits (continued)Aycock Springs Mitigation Site

	Component Summation								
Restoration Level	Stream (linear footage)	Riparian Wetland (acreage)	Nonriparian Wetland (acreage)						
Restoration	3237	0.5							
Enhancement (Level 1)	122								
Enhancement (Level II)	657								
Enhancement		1.5**							
Totals	4016								
Mitigation Units	3581.1 SMUs	0.5 Riparian WMUs	0.00 Nonriparian WMUs						

**Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

***Prior to Site selection, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio of 1.5:1. On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

**** Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation area have been removed from credit generation – UT 4 begins credit generation at Station 11+07).

Activity or Deliverable	Stream Monitoring	Vegetation Monitoring	All Data Collection	Completion
	Complete	Complete	Complete	or Delivery
Technical Proposal (RFP No. 16-005568)				October 2013
DMS Contract No. 5791				February 2014
Mitigation Plan			October 2014	May 2015
Construction Plans				June 2015
Construction Earthwork				April 6, 2016
Planting				April 8, 2016
As-Built Documentation	April 6, 2016	April 13, 2016	April 2016	May 2016
Year 1 Monitoring	October 18, 2016	October 13, 2016	October 2016	December 2016
Supplemental Planting				December 2016
Year 2 Monitoring	April 19-20, 2017	July 25, 2017	October 2017	November 2017

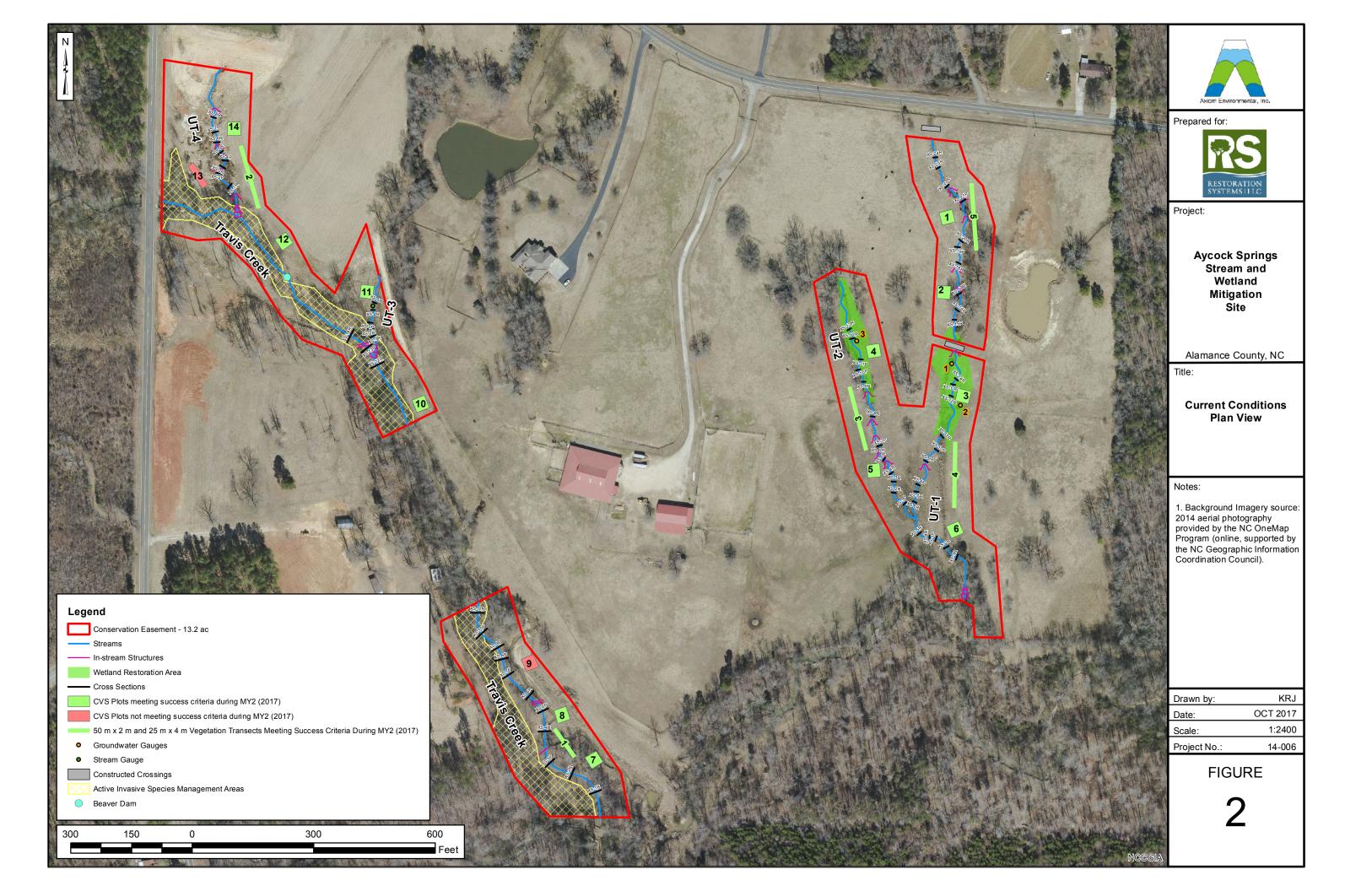
Table 2. Project Activity and Reporting HistoryAvcock Springs Mitigation Site

Table 3. Project Contacts TableAvcock Springs Mitigation Site

Aycock springs whighting site	
Full Delivery Provider	Restoration Systems
	1101 Haynes Street, Suite 211
	Raleigh, North Carolina 27604
	Worth Creech
	919-755-9490
Designer and Monitoring Provider	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis
	919-215-1693

Table 4. Project Attribute TableAycock Springs Mitigation Site

Project Information						
Project Name	Aycock Springs Restoration Site					
Project County	Alamance County, North Carolina					
Project Area (acres)	15					
Project Coordinates (latitude & latitude)	36.127271°N, 79.525214°W					
Project Watershed Summary Information						
Physiographic Province	Piedmont					
Project River Basin	Cape Fear					
USGS HUC for Project (14-digit)	03030002030010					
NCDEQ Sub-basin for Project	03-06-02					
Project Drainage Area (acres)	26-3008					
Project Drainage Area Percentage of Impervious Area	<2%					


Table 4. Project Attribute Table (continued)Aycock Springs Mitigation Site

Reach Summar	Reach Summary Information							
Parameters	Travis Cr	UT 1/UT2	UT 3	UT 4				
Length of reach (linear feet)	1550	1966	212	413				
Valley Classification		alluvi	al					
Drainage Area (acres)	3008	68	26	119				
NCDWQ Stream ID Score		30.75/25.5	26.75	27.5				
NCDWR Water Quality Classification		WS-V, N	NSW					
Existing Morphological Description (Rosgen 1996)	Сд	5/6-, Eg 5-, a		;				
Existing Evolutionary Stage (Simon and Hupp 1986)	IV	IV	III	III				
Underlying Mapped Soils		na, Mixed All Gullied Land,	-	Severely				
Drainage Class		ed, moderately ned, variable,		- ·				
Hydric Soil Status		Nonhydric ar	nd Hydric					
Slope	0.0023	0.0249	0.0153	0.0093				
FEMA Classification	AE	Special	Hazard Floo	d Area				
Native Vegetation Community	Piedmont All	uvial Forest/E Fores	•	ak-Hickory				
Watershed Land Use/Land Cover (Site)		42% forest, 53% agricultural land, <5% low density residential/impervious surface						
Watershed Land Use/Land Cover (Cedarock	65% forest, 30% agricultural land, <5% low							
Reference Channel)	density residential/impervious surface							
Percent Composition of Exotic Invasive Vegetation		< 5%	,)					
Wetland Summa	ry Informatio	ı						
Parameters		Wetla	nds					
Wetland acreage		1.6						
Wetland Type		Ripari	an					
Mapped Soil Series	Worsl	nam and Mixe	d Alluvial L	and				
Drainage Class		Poorly dr	ained					
Hydric Soil Status		Hydr	ic					
Source of Hydrology	Gro	oundwater, stre	eam overban	k				
Hydrologic Impairment	Incised st	reams, compa	cted soils, liv	vestock				
Native Vegetation Community	Piedmor	nt/Low Mount	ain Alluvial	Forest				
Percent Composition of Exotic Invasive Vegetation		<5%)					
Regulatory Co	nsiderations							
Regulation	Applicable?	Resolved?		orting entation				
Waters of the United States-Section 401	Yes	Resolved	404 I	Permit				
Waters of the United States-Section 404	Yes	Resolved	401 Cer	tification				
Endangered Species Act	No		CE	Doc.				
Historic Preservation Act	No		CE	Doc.				
Coastal Zone Management Act	No		N	ΙA				
FEMA Floodplain Compliance	Yes In progress CLOMR/LOMR							
	168	in progress	CLOWI	K/LOMK				

APPENDIX B

VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV)Tables 5A-5E. Visual Stream Morphology Stability AssessmentTable 6. Vegetation Condition AssessmentVegetation Plot Photographs

Visual Stream Morphology Stability Assessment

Table 5A Reach ID Assessed Length

Aycock Springs - Travis Creek 2128

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	10	10			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	9	9			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	9	9			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	9	9			100%			
		2. Thalweg centering at downstream of meander (Glide)	9	9			100%			
		•	•				•	•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%			

Table 5B Reach ID

Visual Stream Morphology Stability Assessment Aycock Springs UT1 1317

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	45	45			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	44	44			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	44	44			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	44	44			100%			
		2. Thalweg centering at downstream of meander (Glide)	44	44			100%			
		•	•		-		•	•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	-		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Reach ID Assessed Length

Table 5C Reach ID

Visual Stream Morphology Stability Assessment Aycock Springs UT2

Assessed Length

675

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	24	24			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	24	24			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		2. Thalweg centering at downstream of meander (Glide)	24	24			100%			
		•	•				•	•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

Table 5D Reach ID

Visual Stream Morphology Stability Assessment Aycock Springs UT3 212

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	8	8			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	8	8			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	8	8			100%			
		2. Thalweg centering at downstream of meander (Glide)	8	8			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

Reach ID Assessed Length

Table 5E Reach ID

Visual Stream Morphology Stability Assessment Aycock Springs UT4

Assessed Length

413

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	8	8			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	8	8			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	8	8			100%			
		2. Thalweg centering at downstream of meander (Glide)	8	8			100%			
	•	•	•		-		•	•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

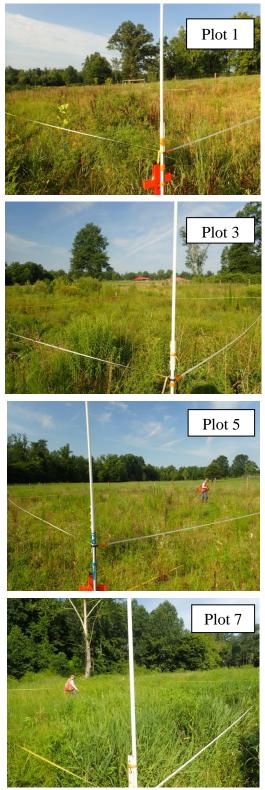
Table 6	Vegetation Condition Assessment
	Aycock Springs
Planted Acreage ¹	11 0

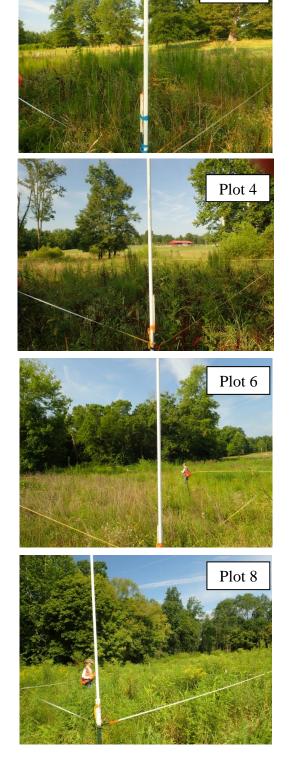
12.2

a	11.5					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
Cumulative Total						0.0%

Easement Acreage	13.3					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
	Management of Chinese privet and multiflora rose is active and ongoing along Travis Creek. 2017 invasives management has improved vegetation condition in this area, however treatment is ongoing.	1000 SF	none	2	2.38	17.9%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

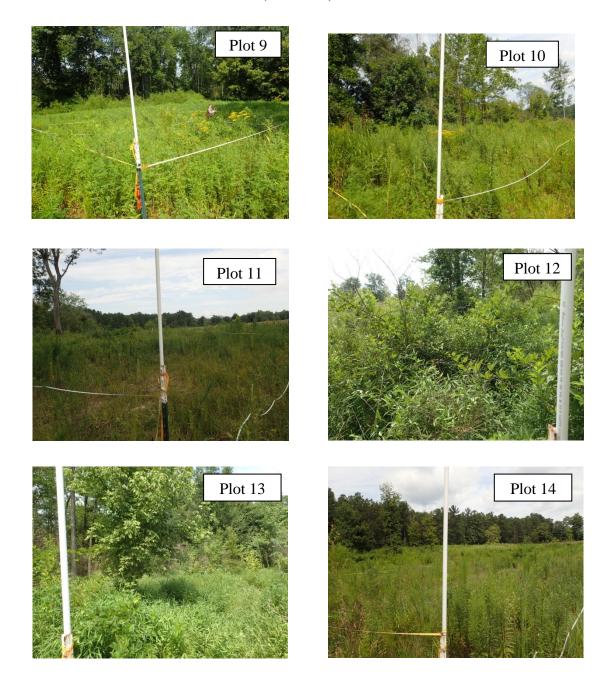

2 = The acreage within the easement boundaries.


E

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are floating invasives polygons, particularly or situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be

Aycock Springs Year 2 Vegetation Monitoring Photographs Taken July 2017



2017 Year 2 Monitoring Report (Contract No. 5791) Aycock Springs Stream and Wetland Restoration Site Alamance County, North Carolina

Appendices Restoration Systems, LLC

Plot 2

Aycock Springs Year 2 Vegetation Monitoring Photographs Taken July 2017 (continued)

2017 Year 2 Monitoring Report (Contract No. 5791) Aycock Springs Stream and Wetland Restoration Site Alamance County, North Carolina

Appendices Restoration Systems, LLC

APPENDIX C

VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

Table 9. Total and Planted Stems by Plot and Species

Table 10a-b. Supplemental Vegetation Transect Data

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	0.604
8	Yes	86%
9	No	
10	Yes	
11	Yes	
12	Yes	
13	No*	
14	Yes	

Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

*This plot did not meet success criteria based on planted stems only; however, when including naturally recruited stems of elm (*Ulmus* sp.) and box elder (*Acer negundo*) this plot was above success criteria.

Table 8. CVS Vegetation Plot	Metadata
Report Prepared By	Corri Faquin
Date Prepared	9/6/2017 15:22
database name	RS-Aycock_2017-v2.3.1.mdb
database location	S:\Business\Projects\14\14-006 Acyock Springs Detailed\2017 YEAR-02\CVS
computer name	KEENAN-PC
file size	56627200
DESCRIPTION OF WORKSHE	EETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	14-006
project Name	Aycock Springs
Description	
River Basin	Cape Fear
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	14

Table 8. CVS Vegetation Plot Metadata

Table 9. Planted and Total Stems Project Code 14.006. Project Name: Aycock Springs

														Cur	rrent Plo	ot Data	(MY2 2	2017)											
			14.006-01-0001 14.006-01-0002 14.006-01-0003 14.006-01-0004 14.006-01-0005 14.006-01-0006 14.006-01-0007 14.006-01-0008									8000	14.006-01-0009																
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	г
Acer negundo	boxelder	Tree																											
Acer rubrum	red maple	Tree									2	2												ľ					
Betula nigra	river birch	Tree																1	1	1				2	2	2			
Callicarpa	beautyberry	Shrub																						ľ					
Callicarpa americana	American beautyberry	Shrub																											
Carpinus caroliniana	American hornbeam	Tree																3	3	3							1	1	
Cephalanthus occidentalis	common buttonbush	Shrub																		2									
Cornus amomum	silky dogwood	Shrub	9	9	9	3	3	3	3	3	3	3	3 3	3	3	3	3	10	10	10	6	6	6	, 4	4	4	1	1	
Cornus florida	flowering dogwood	Tree																											
Diospyros virginiana	common persimmon	Tree																						1	1	1			
Fraxinus pennsylvanica	green ash	Tree			2			3			4	1	1 1	. 6	5 1	. 1	. 1	-						1	1	3			
Liquidambar	sweetgum	Tree																											
Nyssa sylvatica	blackgum	Tree																			1	1	. 1	-					
	American sycamore	Tree	2	2	4							1	1	. 1							1	1	. 1	-			1	1	1
Quercus	oak	Tree							1	1	1																1	1	1
Quercus alba	white oak	Tree	1	1	1																								
Quercus falcata	southern red oak	Tree													3	3	3	5									1	1	1
Quercus michauxii	swamp chestnut oak	Tree							2	2	2	2 2	2 2	2 2															
Quercus nigra	water oak	Tree													1	1	. 1	-											
Quercus pagoda	cherrybark oak	Tree													1	1	. 1	-											
Quercus phellos	willow oak	Tree	1	1	1	1	1	1													1	1	. 1	-					
Quercus rubra	northern red oak	Tree	4	4	4	1	1	1	1	1	1	. 2	2 2	2 2	. 1	. 1	. 1	. 1	1	1									
Sambucus canadensis	Common Elderberry	Shrub				3	3	3	2	2	2	2						1	1	1									
Ulmus	elm	Tree																											
Ulmus alata	winged elm	Tree										1		1	1		1	1											
Ulmus americana	American elm	Tree																											
		Stem count	17	17	21	8	8	11	9	9	15	5 9	9 9	14	10	10	10	16	16	18	9	9	9	8	8	10	5	5	Ę
		size (ares)		1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	-	6	4	4	5	5	5	7	2 5	5 5	5	6	•	6	5	5	6	4	4	. 4	4	4	4	5	5	ŗ
		Stems per ACRE	688	688	849.8	323.7	323.7	445.2	364.2	364.2	607	364.2	364.2	566.6	404.7	404.7	404.7	647.5	647.5	728.4	364.2	364.2	364.2	323.7	323.7	404.7	202.3	202.3	202.3
Color for Density			PnoLS :	= Plante	ed exclu	ding liv	estakes																						

Exceeds requirements by 10%

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Table 9. Planted and Total Stems (continued)

Project Code 14.006. Project Name: Aycock Springs

								Cur	rent Plo	ot Data	(MY2 2	2017)									An	nual Me	eans			
			14.0	06-01-	0010	14.	006-01-	0011	14.0	006-01-	0012	14.0	06-01-	0013	14.006	5-01-0	014	M	Y2 (201	.7)	IV	IY1 (20:	L6)	N	1YO (201	.6)
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-	all	Г	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer negundo	boxelder	Tree												9						9			5	5		
Acer rubrum	red maple	Tree																		2	-		5	5		
Betula nigra	river birch	Tree													2	2	2	5	5	5	5	5	5	5 9	9	9
Callicarpa	beautyberry	Shrub									1	L								1						
Callicarpa americana	American beautyberry	Shrub																					1			
Carpinus caroliniana	American hornbeam	Tree				1	1	1	1	1	1	L						6	6	6	5 5	5	5	5 7	7	7
Cephalanthus occidentalis	common buttonbush	Shrub																		2	-		4	ŀ		
Cornus amomum	silky dogwood	Shrub	4	4	4	2	2	2				1	1	1				49	49	49	52	52	52	57	57	57
Cornus florida	flowering dogwood	Tree				2	2	2										2	2	2	. 4	4	4	4 4	4	2
Diospyros virginiana	common persimmon	Tree	1	1	1													2	2	2	. 1	1	1	2	2	2
Fraxinus pennsylvanica	green ash	Tree	1	1	5				3	3	3	3			3	3	4	10	10	31	. 5	5	13	3	3	5
Liquidambar	sweetgum	Tree												1						1						
Nyssa sylvatica	blackgum	Tree							2	2	2	2						3	3	3	3	3	3	6	6	6
Platanus occidentalis	American sycamore	Tree				1	1	1							1	1	1	7	7	9	1	1	1	. 5	5	5
Quercus	oak	Tree	2	2	2							1	1	1				5	5	5	4	4	4	11	11	11
Quercus alba	white oak	Tree																1	1	1	. 1	1	1	2	2	2
Quercus falcata	southern red oak	Tree																4	4	4						
Quercus michauxii	swamp chestnut oak	Tree													3	3	3	7	7	7	5	5	5	5		
Quercus nigra	water oak	Tree																1	1	1						
Quercus pagoda	cherrybark oak	Tree																1	1	1	. 1	1	1	6	6	E
Quercus phellos	willow oak	Tree	1	1	1	3	3	3	1	1	1	L 1	1	. 1				9	9	9	6	6	6	5 18	18	18
Quercus rubra	northern red oak	Tree	1	1	1				1	1	1	L						12	12	12	. 11	11	11	. 13	13	13
Sambucus canadensis	Common Elderberry	Shrub				1	1	1										7	7	7	11	11	11	62	62	62
Ulmus	elm	Tree												2						2	-					
Ulmus alata	winged elm	Tree																			1					2
Ulmus americana	American elm	Tree																					3	8		
		Stem count	10	10	14	10	10	10	8	8	ç	3	3	15	9	9	10	131	131	171	. 115	115	141	. 205	205	216
		size (ares)		1			1			1			1			1			14			14			14	
		size (ACRES)		0.02			0.02			0.02			0.02		().02			0.35			0.35			0.35	
		Species count	6	6	6	6	6	6	5	5	6	5 3	3	6	4	4	4	17	17	23	15	15	20) 14	14	16
		Stems per ACRE	404.7	404.7	566.6	404.7	404.7	404.7	323.7	323.7	364.2	121.4	121.4	607	364.2 3	864.2	404.7	378.7	378.7	494.3	332.4	332.4	407.6	592.6	592.6	624.4
Color for Density			PnoLS	= Plante	ed exclu	ıding liv	estakes	5																		

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m	Temporary Plot 4 2m x 50m	Temporary Plot 5 2m x 50m
Betula nigra	River birch	Tree		1	1		
Carpinus caroliniana	American hornbeam	Tree	2		2		
Cornus amomum	Silky dogwood	Tree	1		3	6	3
Fraxinus pennsylvanica	Green ash	Tree	2	3	3		2
Platanus occidentalis	Sycamore	Tree	2	1			
Quercus lyrata	Overcup oak	Tree					1
Quercus michauxii	Swamp chestnut oak	Tree			1		
Quercus nigra	Water oak	Tree	1	1			2
Quercus phellos	Willow oak	Tree	3	2	1	1	1
Quercus rubra	Northern red oak	Tree	1	1	2	2	3
		Stem Count	12	9	13	9	12
		Size (Ares)	1	1	1	1	1
		Size (Acres)	0.0247	0.0247	0.0247	0.0247	0.0247
		Species count	7	6	7	3	6
		Stems per acre	485.8	364.4	526.3	364.4	485.8

Table 10a. Supplemental Vegetation Transect Data – April 2017

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m	Temporary Plot 4 2m x 50m	Temporary Plot 5 2m x 50m
Betula nigra	River birch	Tree		1			
Carpinus caroliniana	American hornbeam	Tree	2		2		
Cornus amomum	Silky dogwood	Tree	1		3	6	3
Fraxinus pennsylvanica	Green ash	Tree	2	3	3		2
Platanus occidentalis	Sycamore	Tree	8	2			
Quercus lyrata	Overcup oak	Tree					1
Quercus michauxii	Swamp chestnut oak	Tree			1		
Quercus nigra	Water oak	Tree	1	1			1
Quercus phellos	Willow oak	Tree	3	2	1		1
Quercus rubra	Northern red oak	Tree	1	1	2	2	3
		Stem Count	18	10	12	8	11
		Size (Ares)	1	1	1	1	1
		Size (Acres)	0.0247	0.0247	0.0247	0.0247	0.0247
		Species count	7	6	6	2	6
		Stems per acre	728.7	404.9	485.8	323.9	445.3

Table 10b. Supplemental Vegetation Transect Data – October 2017

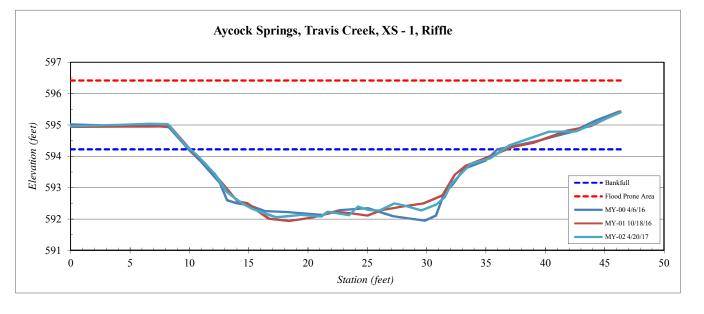
APPENDIX D

STREAM SURVEY DATA

Cross-section Plots

Substrate Plots

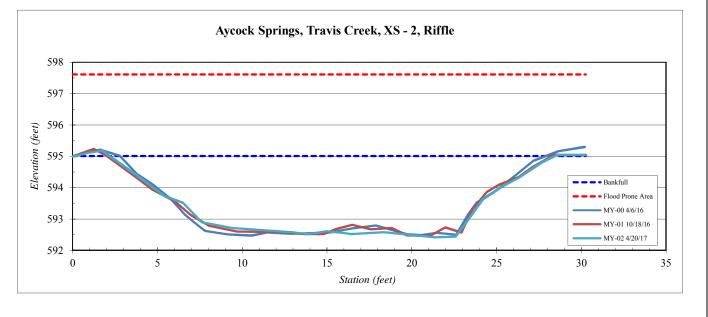
Tables 11a-e. Baseline Stream Data Summary


Tables 12a-f. Monitoring Data

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 1, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation	
0.0	594.96	
4.5	595.00	
6.6	595.04	
8.2	595.03	
9.6	594.39	
10.7	594.00	
12.1	593.46	
13.2	592.84	
14.0	592.61	
14.5	592.49	
15.3	592.32	
17.3	592.05	
19.4	592.13	
21.1	592.07	
21.7	592.23	
23.4	592.12	
24.2	592.39	
25.1	592.28	
26.0	592.27	
27.3	592.49	
28.1	592.4	
29.5	592.3	
30.8	592.5	
31.5	592.7	
32.0	593.1	
33.7	593.7	
35.4	593.9	
37.0	594.4	
40.3	594.8	
42.6	594.8	
46.4	595.4	
		L

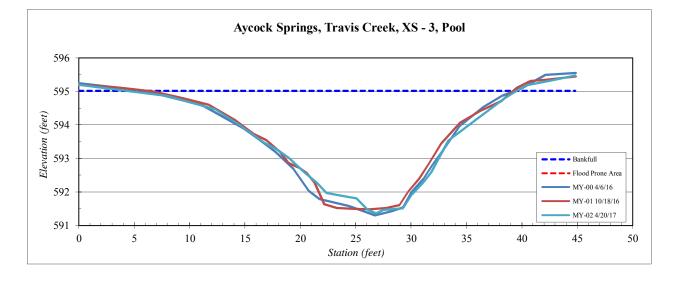
SUMMARY DATA	
Bankfull Elevation:	594.2
Bankfull Cross-Sectional Area:	40.1
Bankfull Width:	26.4
Flood Prone Area Elevation:	596.4
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.5
W / D Ratio:	17.4
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 2, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	594.99
0.9	595.11
1.8	595.18
3.2	594.60
4.1	594.26
5.4	593.75
6.5	593.51
7.6	592.89
9.4	592.71
12.9	592.58
13.9	592.52
15.0	592.61
16.1	592.54
16.4	592.52
18.3	592.58
21.4	592.41
22.6	592.44
23.2	592.91
24.2	593.63
25.4	594.06
26.3	594.3
27.7	594.8
28.6	595.0
30.3	595.1

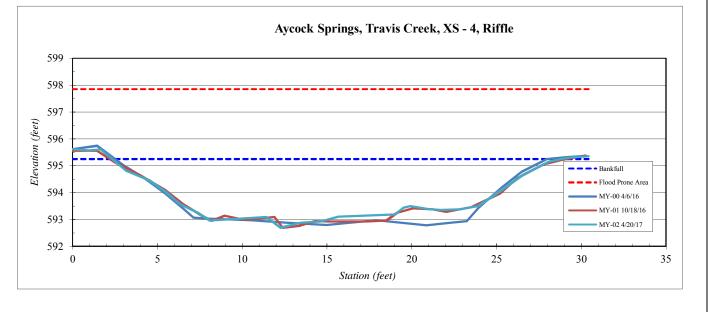
SUMMARY DATA	
Bankfull Elevation:	595.0
Bankfull Cross-Sectional Area:	47.9
Bankfull Width:	26.3
Flood Prone Area Elevation:	597.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.6
Mean Depth at Bankfull:	1.8
W / D Ratio:	14.4
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.04


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 3, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.2
8.0	594.9
10.2	594.7
12.3	594.5
14.4	594.0
16.7	593.5
18.0	593.2
19.0	593.0
20.3	592.6
21.5	592.3
22.4	592.0
23.6	591.9
25.1	591.8
26.1	591.5
26.8	591.4
27.5	591.5
29.3	591.5
30.1	591.9
31.1	592.3
31.8	592.6
33.4	593.5
35.8	594.1
38.5	594.8
40.4	595.2
42.7	595.3
44.8	595.5

SUMMARY DATA	
Bankfull Elevation:	595.0
Bankfull Cross-Sectional Area:	57.2
Bankfull Width:	35.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.7
Mean Depth at Bankfull:	1.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

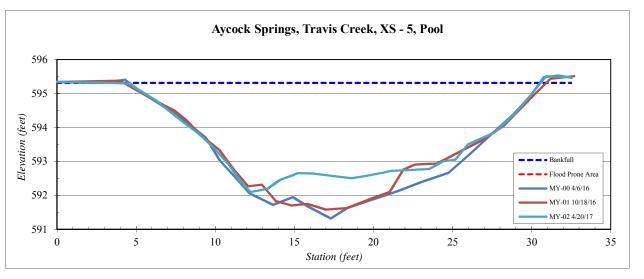
Stream Type



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 4, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.61
0.9	595.57
1.7	595.60
3.1	594.82
4.5	594.46
5.5	594.00
6.3	593.57
7.4	593.25
8.1	592.96
11.4	593.10
12.3	592.69
13.4	592.88
14.7	592.92
15.7	593.11
19.0	593.19
19.5	593.44
19.9	593.49
21.0	593.39
21.7	593.36
22.8	593.38
23.9	593.5
25.1	594.0
26.6	594.7
28.1	595.2
29.2	595.3
30.4	595.4

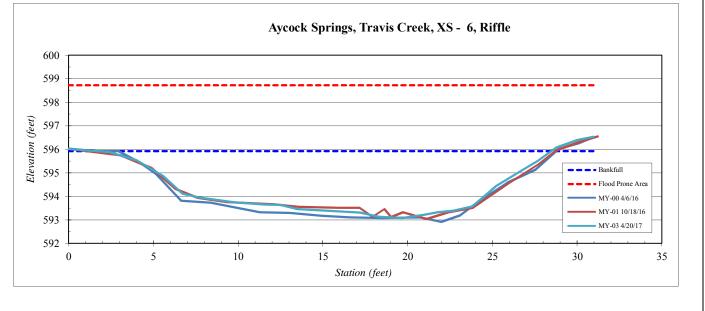
SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	43.8
Bankfull Width:	26.5
Flood Prone Area Elevation:	597.9
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.6
Mean Depth at Bankfull:	1.7
W / D Ratio:	16.0
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.04


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 5, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.3
2.9	595.3
4.5	595.3
6.3	594.8
8.0	594.2
8.9	593.8
9.8	593.4
10.8	592.9
11.6	592.4
12.2	592.1
13.3	592.2
14.1	592.5
14.9	592.6
15.2	592.7
16.2	592.6
17.0	592.6
18.6	592.5
19.7	592.6
20.7	592.7
21.1	592.7
22.4	592.7
23.5	592.8
24.4	593.0
25.2	593.0
26.0	593.5
27.6	593.9
28.9	594.4
29.9	594.9
30.9	595.51
32.5	595.48

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	52.3
Bankfull Width:	26.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.2
Mean Depth at Bankfull:	2.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

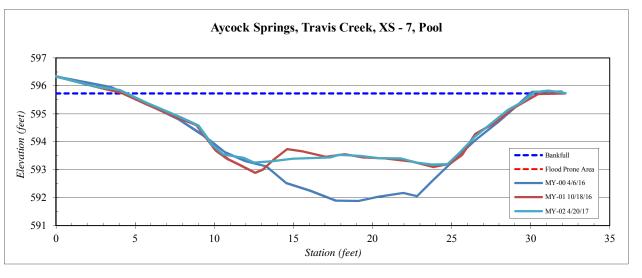
Stream Type


Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 6, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.02
2.4	595.89
4.0	595.54
5.6	594.85
6.7	594.11
7.7	593.95
9.8	593.74
11.6	593.64
12.5	593.64
13.5	593.45
15.6	593.38
17.2	593.31
18.3	593.13
19.7	593.08
21.0	593.22
21.8	593.32
22.7	593.39
23.8	593.57
24.5	593.99
25.2	594.43
26.6	595.0
27.7	595.5
28.8	596.1
30.0	596.4
31.0	596.5

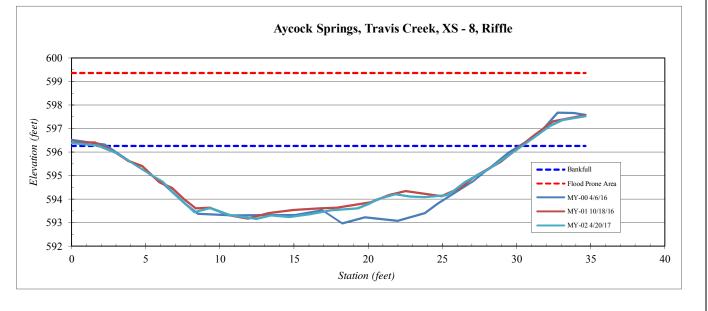
SUMMARY DATA	
Bankfull Elevation:	595.9
Bankfull Cross-Sectional Area:	50.3
Bankfull Width:	26.8
Flood Prone Area Elevation:	598.7
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.8
Mean Depth at Bankfull:	1.9
W / D Ratio:	14.3
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 7, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation	
0.0	596.3	
2.4	596.0	
4.0	595.9	
5.7	595.4	
7.9	594.9	
9.0	594.6	
9.9	593.9	
10.6	593.5	
11.8	593.4	
12.5	593.3	
13.6	593.3	
14.9	593.4	
17.3	593.4	
17.9	593.5	
19.2	593.5	
20.4	593.4	
21.8	593.4	
22.8	593.3	
23.8	593.2	
24.7	593.2	
25.5	593.6	
26.5	594.2	
28.5	595.1	
29.5	595.4	
30.3	595.8	
31.1	595.8	
32.2	595.7	

SUMMARY DATA	
Bankfull Elevation:	595.7
Bankfull Cross-Sectional Area:	44.9
Bankfull Width:	25.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.5
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

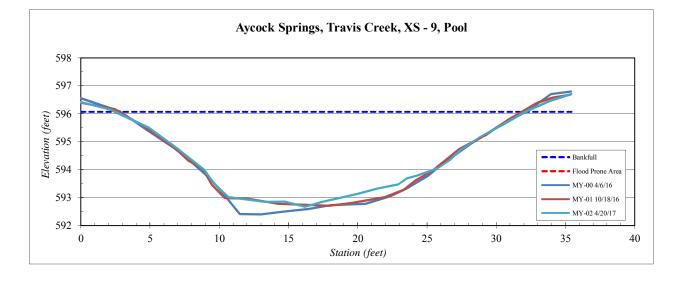
Stream Type


Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 8, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation	
0.0	596.39	
1.8	596.27	
3.1	595.95	
4.7	595.30	
6.2	594.72	
6.7	594.39	
8.3	593.45	
9.3	593.62	
10.7	593.33	
12.5	593.15	
13.4	593.31	
14.7	593.24	
16.1	593.37	
17.5	593.52	
19.3	593.61	
20.0	593.80	
20.7	594.00	
21.8	594.20	
22.8	594.12	
23.8	594.08	
25.3	594.2	
25.7	594.3	
26.5	594.7	
28.1	595.3	
30.4	596.3	
32.3	597.1	
33.1	597.4	
34.6	597.5	

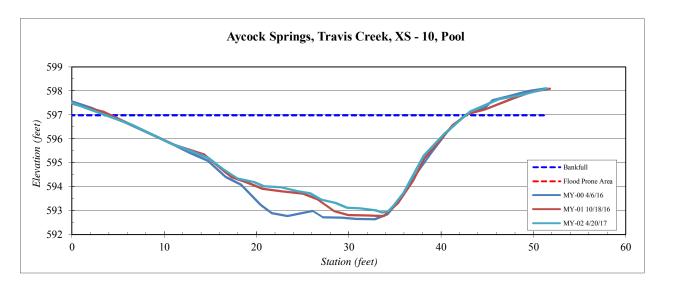
SUMMARY DATA	
Bankfull Elevation:	596.3
Bankfull Cross-Sectional Area:	58.3
Bankfull Width:	28.6
Flood Prone Area Elevation:	599.4
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.1
Mean Depth at Bankfull:	2.0
W / D Ratio:	14.0
Entrenchment Ratio:	5.2
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 9, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.4
2.1	596.1
4.9	595.5
7.0	594.7
7.9	594.4
8.9	594.0
9.6	593.5
10.7	593.0
13.4	592.8
14.7	592.8
16.2	592.7
17.4	592.8
18.6	593.0
20.1	593.1
21.4	593.3
22.9	593.5
23.6	593.7
24.3	593.8
25.7	594.0
26.6	594.3
27.4	594.7
28.8	595.2
30.5	595.6
32.1	596.1
33.8	596.5
35.4	596.7

SUMMARY DATA	
Bankfull Elevation:	596.1
Bankfull Cross-Sectional Area:	60.8
Bankfull Width:	29.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.4
Mean Depth at Bankfull:	2.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

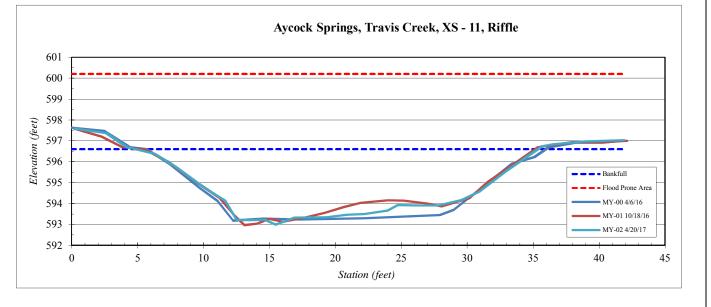
Stream Type


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 10, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation	
-0.2	597.5	
6.5	596.6	
10.5	595.8	
13.2	595.4	
14.8	595.2	
16.4	594.7	
18.0	594.3	
19.8	594.2	
20.8	594.0	
22.7	594.0	
24.4	593.8	
25.8	593.7	
27.0	593.4	
28.6	593.3	
29.8	593.1	
31.2	593.1	
32.9	593.0	
33.6	592.9	
34.3	593.0	
34.9	593.2	
36.0	593.7	
38.1	595.3	
40.4	596.2	
43.1	597.1	
46.3	597.7	
48.7	597.8	
51.5	598.1	

SUMMARY DATA	
Bankfull Elevation:	597.0
Bankfull Cross-Sectional Area:	87.5
Bankfull Width:	39.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	4.1
Mean Depth at Bankfull:	2.2
W / D Ratio:	NA
Entrenchment Ratio:	NA

Stream Type



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 11, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	597.58
2.6	597.36
4.2	596.69
6.3	596.38
7.9	595.75
10.3	594.66
11.6	594.14
12.5	593.22
13.5	593.20
14.7	593.22
15.5	592.99
16.9	593.33
19.3	593.35
20.9	593.47
22.2	593.50
24.0	593.66
24.7	593.92
26.2	593.90
27.8	593.90
29.6	594.16
31.0	594.6
32.9	595.5
35.7	596.7
36.5	596.8
38.9	597.0
41.9	597.0

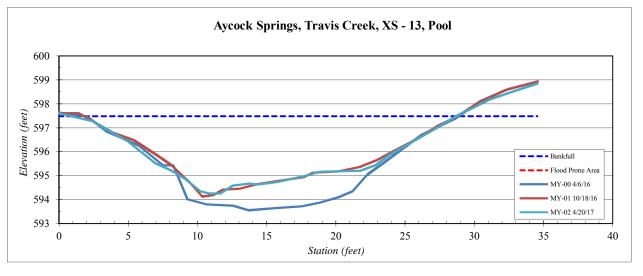
SUMMARY DATA	
Bankfull Elevation:	596.6
Bankfull Cross-Sectional Area:	69.6
Bankfull Width:	30.5
Flood Prone Area Elevation:	600.2
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	2.3
W / D Ratio:	13.4
Entrenchment Ratio:	4.9
Bank Height Ratio:	1.06



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 12, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	598.46
4.0	598.22
7.2	597.59
9.7	596.71
11.9	595.98
14.3	594.95
15.6	594.71
17.2	594.47
18.4	594.64
20.3	594.47
21.4	594.38
22.4	594.41
23.4	594.25
24.6	594.33
25.4	594.48
26.4	594.57
27.4	594.83
28.8	595.12
30.7	595.41
32.2	596.02
34.3	597.0
36.2	597.9
37.4	598.4
39.6	598.5

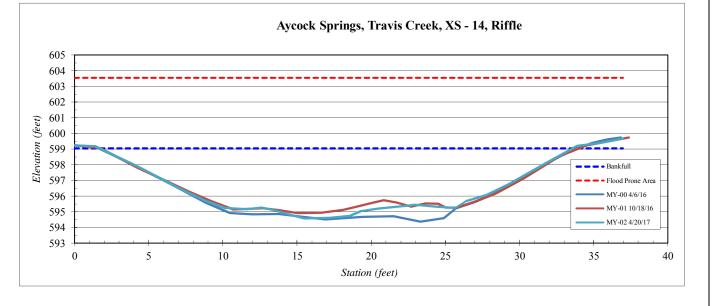
SUMMARY DATA	
Bankfull Elevation:	597.8
Bankfull Cross-Sectional Area:	67.9
Bankfull Width:	29.7
Flood Prone Area Elevation:	601.3
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	2.3
W / D Ratio:	13.0
Entrenchment Ratio:	5.1
Bank Height Ratio:	1.03


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 13, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	597.6
2.4	597.3
5.0	596.4
6.9	595.5
8.2	595.2
9.1	594.9
10.2	594.3
10.9	594.3
11.7	594.3
12.6	594.6
13.8	594.7
14.4	594.6
15.8	594.7
17.8	595.0
18.8	595.2
20.6	595.2
21.7	595.2
22.9	595.4
23.9	595.9
25.2	596.3
27.3	597.0
28.8	597.5
31.1	598.2
32.9	598.5
34.6	598.8

SUMMARY DATA	
Bankfull Elevation:	597.5
Bankfull Cross-Sectional Area:	51.9
Bankfull Width:	27.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.2
Mean Depth at Bankfull:	1.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

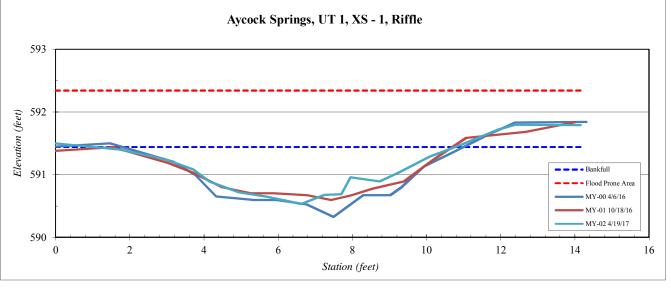
Stream Type


Note: Sediment Deposition in pool appears natural and is not expected to lead to instability.

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 14, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	599.22
1.4	599.20
4.3	597.89
7.5	596.29
8.8	595.69
10.2	595.24
11.6	595.17
12.6	595.28
13.4	595.12
14.7	594.77
15.5	594.57
17.2	594.62
18.6	594.75
19.3	595.05
20.5	595.20
22.4	595.39
23.0	595.45
24.3	595.32
25.7	595.26
26.4	595.68
27.8	596.1
29.3	596.8
31.6	598.0
33.9	599.2
35.5	599.4
37.0	599.7

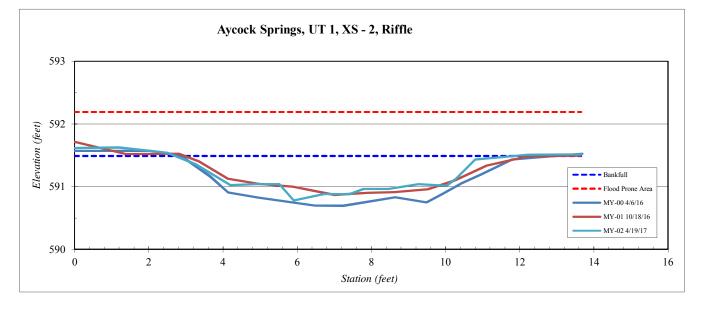
SUMMARY DATA	
Bankfull Elevation:	599.1
Bankfull Cross-Sectional Area:	94.6
Bankfull Width:	31.9
Flood Prone Area Elevation:	603.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.5
Mean Depth at Bankfull:	3.0
W / D Ratio:	10.8
Entrenchment Ratio:	4.7
Bank Height Ratio:	1.0



Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 1, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

_		
SU	Elevation	Station
Ba	591.52	-0.3
Bai	591.40	1.7
Bai	591.26	2.9
Flo	591.08	3.7
Flo	590.89	4.1
Ma	590.72	4.9
Me	590.65	5.7
\mathbf{W}	590.53	6.6
En	590.68	7.2
Ba	590.69	7.7
	590.96	8.0
	590.89	8.7
	591.04	9.3
	591.28	10.1
	591.48	10.9
	591.72	11.9
	591.79	12.4
	591.79	14.2
et)		
(feu		
vation (feet)		
atic		

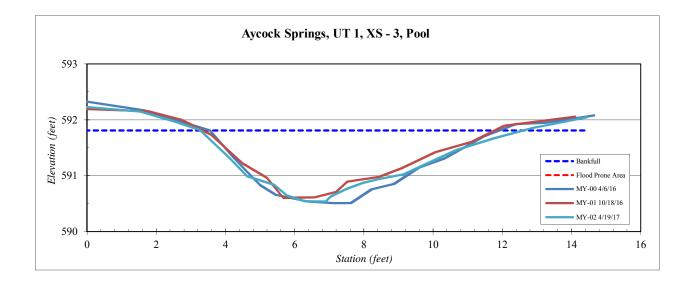
SUMMARY DATA	
Bankfull Elevation:	591.4
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	9.7
Flood Prone Area Elevation:	592.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	21.4
Entrenchment Ratio:	9.3
Bank Height Ratio:	1.0



Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 2, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

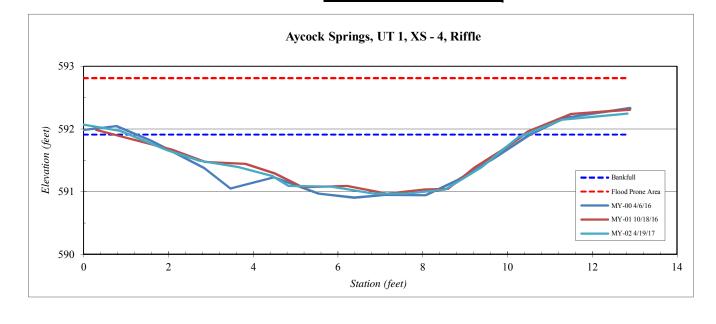
Station	Elevation
0.0	591.62
1.2	591.63
2.5	591.54
3.3	591.36
4.2	591.03
4.9	591.04
5.5	591.04
5.9	590.78
6.7	590.88
7.4	590.88
7.8	590.96
8.5	590.96
9.3	591.04
10.0	591.01
10.3	591.12
10.8	591.43
12.2	591.51
13.7	591.51

SUMMARY DATA	
Bankfull Elevation:	591.5
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	9.2
Flood Prone Area Elevation:	592.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	22.9
Entrenchment Ratio:	9.8
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.3	592.2
1.5	592.1
2.5	592.0
3.3	591.8
4.1	591.3
4.6	591.0
5.4	590.8
5.8	590.6
6.3	590.5
6.9	590.5
7.0	590.6
7.5	590.8
8.0	590.9
8.4	590.9
9.1	591.0
9.6	591.2
10.7	591.5
11.8	591.7
12.9	591.9
14.4	592.0

SUMMARY DATA	
Bankfull Elevation:	591.8
Bankfull Cross-Sectional Area:	6.4
Bankfull Width:	9.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


Stream Type

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 4, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

SUMMARY DATA	
Bankfull Elevation:	591.
Bankfull Cross-Sectional Area:	5.7
Bankfull Width:	9.3
Flood Prone Area Elevation:	592.
Flood Prone Width:	90.
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	15.
Entrenchment Ratio:	9.7
Bank Height Ratio:	1.0

Station	Lievation
-0.2	592.09
0.9	591.97
2.0	591.66
2.7	591.49
3.7	591.39
4.5	591.25
4.8	591.09
5.8	591.08
6.9	590.97
7.6	590.97
8.5	591.03
9.4	591.39
10.2	591.87
11.3	592.15
12.8	592.24

Station Elevation

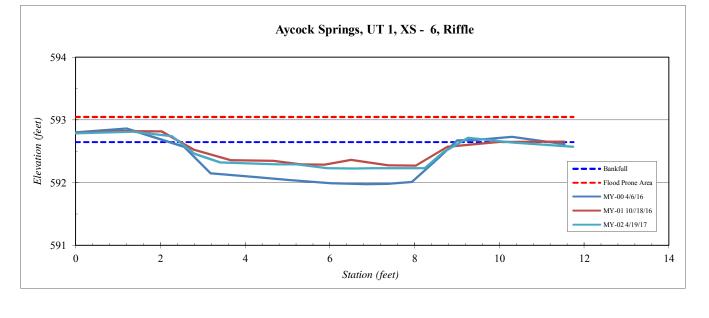
Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 5, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

JMMARY DATA	
ankfull Elevation:	
ankfull Cross-Sectional A	Area:
ankfull Width:	
ood Prone Area Elevatio	on:
ood Prone Width:	
ax Depth at Bankfull:	
ean Depth at Bankfull:	
/ D Ratio:	
ntrenchment Ratio:	
ank Height Ratio:	

Aycock Springs, UT 1, XS - 5, Riffle 594 593 Elevation (feet) 265 🗕 🗕 🗕 • Bankfull - - Flood Prone Area 591 MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 590 2 4 6 8 10 12 0 14 16 Station (feet)

Stream Type

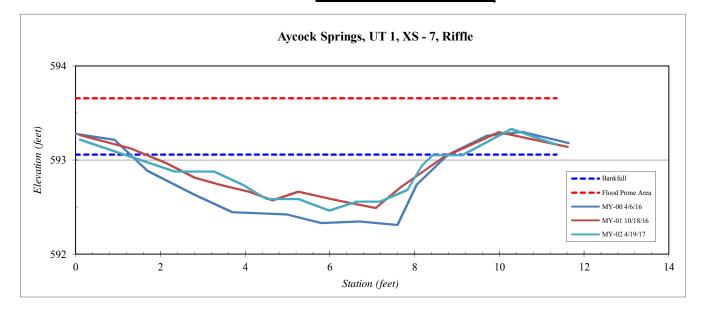
592.2 5.8 9.3 593.2 90.0 1.0 0.6 14.9 9.7 1.0


Station	Elevation
0.0	592.40
1.9	592.33
3.0	592.12
4.0	591.76
5.0	591.40
5.6	591.33
5.8	591.49
6.3	591.48
6.7	591.30
7.2	591.30
7.5	591.23
8.5	591.18
8.9	591.53
9.5	591.48
10.1	591.55
10.8	591.80
11.9	592.23
13.9	592.39

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 6, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	592.79
1.4	592.81
2.3	592.74
2.8	592.46
3.4	592.32
4.8	592.29
5.2	592.29
5.9	592.23
6.6	592.23
7.1	592.23
7.5	592.23
8.2	592.23
8.7	592.49
9.3	592.71
10.3	592.64
11.7	592.58

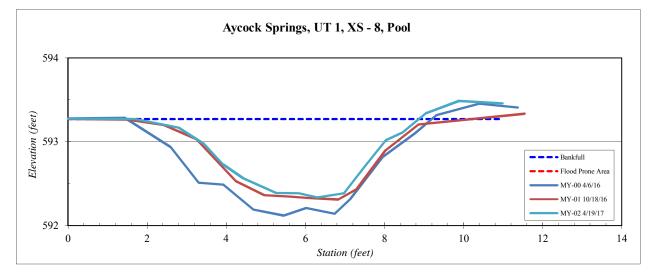
SUMMARY DATA	
Bankfull Elevation:	592.7
Bankfull Cross-Sectional Area:	2.2
Bankfull Width:	6.7
Flood Prone Area Elevation:	593.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	20.4
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.0



Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 7, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.1	593.22
2.3	592.88
3.3	592.88
3.9	592.74
4.5	592.58
5.3	592.59
6.0	592.46
6.6	592.56
7.2	592.56
7.8	592.69
8.2	592.94
8.4	593.05
9.1	593.05
10.3	593.33
11.4	593.17

SUMMARY DATA	
Bankfull Elevation:	593.1
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	7.3
Flood Prone Area Elevation:	593.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	22.2
Entrenchment Ratio:	12.3
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	593.3
1.7	593.3
2.8	593.2
3.4	593.0
3.9	592.7
4.4	592.6
5.3	592.4
5.8	592.4
6.3	592.3
7.0	592.4
7.5	592.7
8.0	593.0
8.5	593.1
9.0	593.3
9.9	593.5
11.0	593.5

SUMMARY DATA	
Bankfull Elevation:	593.3
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	7.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Note: Cross Sections 8 and 9 (UT 1) are located in the vicinity of a bed material repair. Additional bed material was added by hand in this reach.

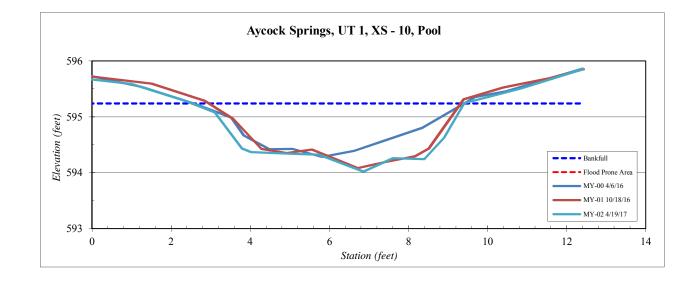
Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 9, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	594.84
1.0	594.93
1.8	594.68
2.6	594.57
3.2	594.56
4.3	594.63
4.8	594.47
5.6	594.43
6.0	594.45
7.2	594.55
8.5	594.64
9.2	594.79
11.1	594.76

SUMMARY DATA	
Bankfull Elevation:	594.8
Bankfull Cross-Sectional Area:	1.6
Bankfull Width:	7.6
Flood Prone Area Elevation:	595.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	36.1
Entrenchment Ratio:	11.8
Bank Height Ratio:	1.0

Stream Type C/E Aycock Springs, UT 1, XS - 9, Riffle 596 Elevation (feet) 262 🗕 🕳 🗕 Bankfull Flood Prone Area MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 593 0 2 4 6 8 10 12 Station (feet) Note: Cross Sections 8 and 9 (UT 1) are located in the vicinity of a bed material repair. Additional bed material was

added by hand in this reach.


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.5	595.7
1.0	595.6
2.3	595.3
3.1	595.1
3.8	594.4
4.0	594.4
5.2	594.3
5.7	594.3
6.9	594.0
7.6	594.3
8.4	594.2
8.9	594.6
9.4	595.2
10.8	595.5
12.4	595.9

SUMMARY DATA	
Bankfull Elevation:	595.2
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	6.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 11, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Elevation

596.06

595.83 595.34

595.27

595.38

595.37

595.26

595.25

595.72 596.06

596.11

596.21

Station

0.0

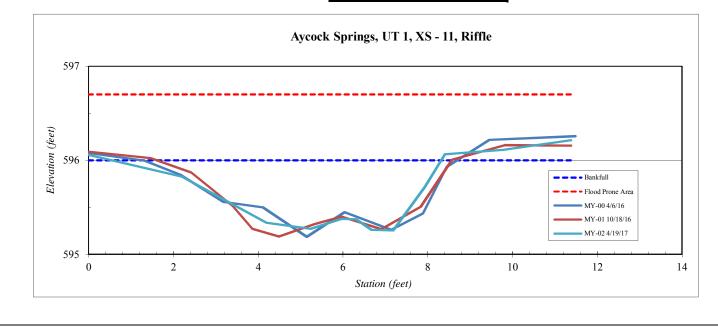
4.2

5.2

6.0 6.3

6.7

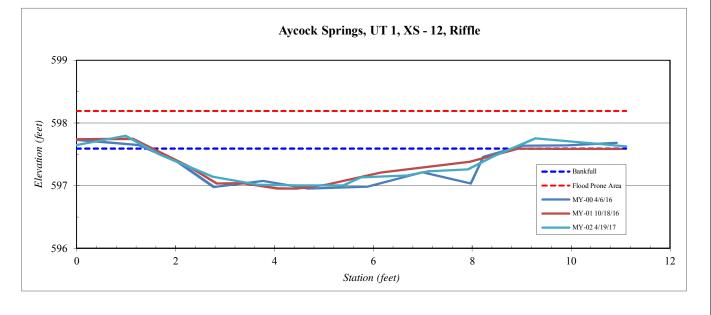
7.2


7.9

8.4 9.8

11.4

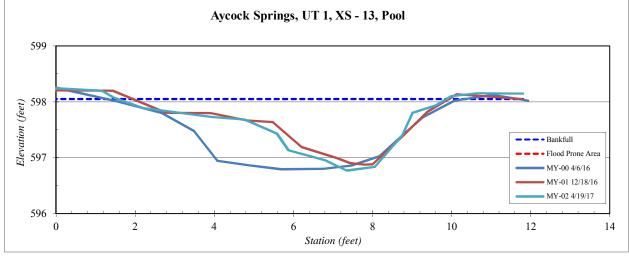
SUMMARY DATA	
Bankfull Elevation:	596.0
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	7.8
Flood Prone Area Elevation:	596.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.4
Entrenchment Ratio:	11.5
Bank Height Ratio:	1.0



Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 12, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	597.65
1.0	597.80
1.7	597.50
2.8	597.14
3.7	597.01
4.5	597.01
5.4	597.00
5.7	597.13
6.7	597.16
7.1	597.23
7.9	597.26
8.4	597.47
9.3	597.75
11.1	597.63

SUMMARY DATA	
Bankfull Elevation:	597.6
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	6.4
Flood Prone Area Elevation:	598.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	14.6
Entrenchment Ratio:	14.1
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 13, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.3	598.3
1.2	598.2
1.5	598.1
2.2	597.9
3.9	597.7
4.8	597.7
5.6	597.4
5.9	597.1
6.8	597.0
7.3	596.8
8.1	596.8
8.8	597.4
9.0	597.8
9.6	597.9
10.0	598.1
10.7	598.2
11.8	598.1

SUMMARY DATA	
Bankfull Elevation:	598.1
Bankfull Cross-Sectional Area:	4.7
Bankfull Width:	8.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type

Note: Point bar development appears stable after years 1 and 2 monitoring.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 14, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station

0.2

2.3

3.0

4.0

5.4 6.6

7.6 8.4

9.3 11.2 Elevation

598.35

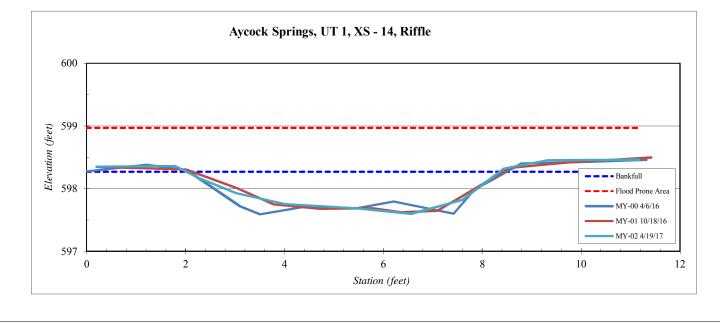
598.36

598.16 597.93

597.75

597.69

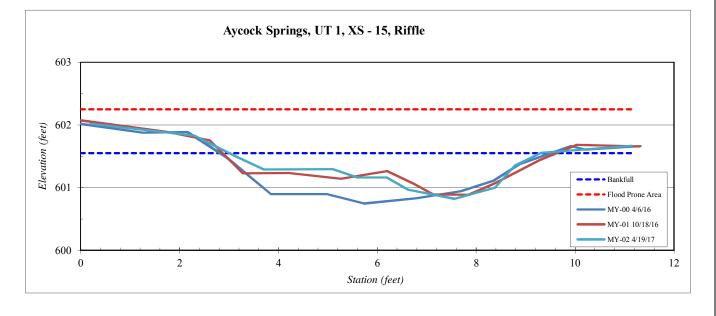
597.60 597.82

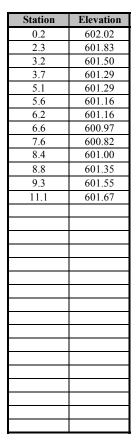

598.32

598.46

598.46

SUMMARY DATA	
Bankfull Elevation:	598.3
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	6.3
Flood Prone Area Elevation:	599.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	14.2
Entrenchment Ratio:	14.3
Bank Height Ratio:	1.0





Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 15, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

SUMMARY DATA	
Bankfull Elevation:	601.6
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	6.3
Flood Prone Area Elevation:	602.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.5
Entrenchment Ratio:	14.3
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 16, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

	Elevation
0.1	602.23
1.9	602.10
3.1	601.95
3.7	601.67
4.9	601.75
5.9	601.74
6.6	601.70
7.3	601.69
8.2	601.66
9.1	601.62
9.9	601.86
10.5	602.11
11.1	602.27
12.6	602.34

SUMMARY DATA	
Bankfull Elevation:	602.1
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	8.5
Flood Prone Area Elevation:	602.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	25.8
Entrenchment Ratio:	10.6
Bank Height Ratio:	1.0

No problems appear to be occuring in this reach.

Stream Type C/E Aycock Springs, UT 1, XS - 16, Riffle 603 Elevation (feet) 602 **– – –** • Bankfull Flood Prone Area MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 601 2 10 0 4 6 8 12 14 Station (feet) Note: Sediment transport appears to be natural and has stabilized during years 1 and 2 monitoring.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 17, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

0.0 2.1 3.7 4.8 5.4 6.4 7.3 8.1 9.5 9.8	603.87 603.63 603.56 603.20 602.77 602.79 602.78 602.65 602.65 602.94	
3.7 4.8 5.4 6.4 7.3 8.1 9.5	603.56 603.20 602.77 602.79 602.78 602.65	
4.8 5.4 6.4 7.3 8.1 9.5	603.20 602.77 602.79 602.78 602.65 602.65	
5.4 6.4 7.3 8.1 9.5	602.77 602.79 602.78 602.65 602.65	
6.4 7.3 8.1 9.5	602.79 602.78 602.65 602.65	
7.3 8.1 9.5	602.78 602.65 602.65	
9.5	602.65 602.65	
9.5	602.65	
9.8	602.94	
10.9	603.26	
11.6	603.45	
13.3	603.43	

SUMMARY DATA	
Bankfull Elevation:	603.4
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	7.4
Flood Prone Area Elevation:	604.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.8
Entrenchment Ratio:	12.2
Bank Height Ratio:	1.14

Stream Type C/E Aycock Springs, UT 1, XS - 17, Riffle 605 Elevation (feet) 603 **— — — •** Bankfull - - Flood Prone Area MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 602 12 0 2 4 6 8 10 14 16 Station (feet)

Note: No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 18, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

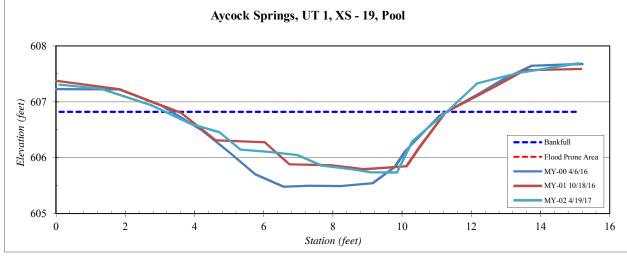
Station	Elevation	
0.1	606.14	
1.6	606.14	
2.4	606.03	
3.1	605.58	
4.1	605.33	
5.1	605.17	
5.8	605.19	
6.8	605.28	
7.2	605.34	
7.7	605.45	
8.5	605.47	
9.2	605.90	
10.2	606.28	
11.6	606.65	
12.5	606.62	

SUMMARY DATA	
Bankfull Elevation:	605.9
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	6.7
Flood Prone Area Elevation:	606.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	12.5
Entrenchment Ratio:	13.4
Bank Height Ratio:	1.33

Aycock Springs, UT 1, XS - 18, Riffle 607 Elevation (feet) 909 🗕 🗕 🗕 • Bankfull Flood Prone Area MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 605 2 10 12 8 0 4 6 14 Station (feet)

Stream Type

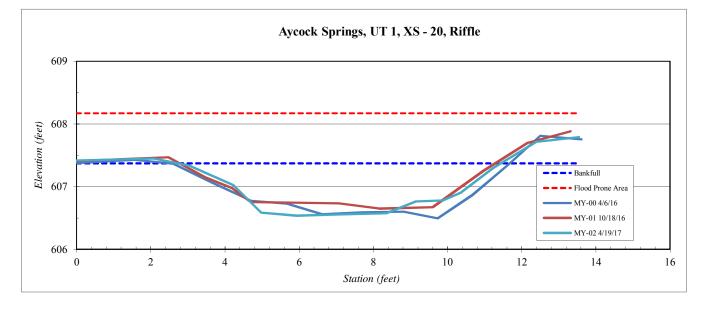
Note: No problems have been noted in this reach. Elevated BHR results from shallow channel depth.


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 19, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	607.3
1.3	607.2
2.7	606.9
3.9	606.6
4.7	606.5
5.3	606.1
6.1	606.1
7.0	606.0
7.7	605.9
8.6	605.8
9.1	605.7
9.8	605.7
10.3	606.3
11.3	606.8
12.2	607.3
13.4	607.5
15.1	607.7

SUMMARY DATA	
Bankfull Elevation:	606.8
Bankfull Cross-Sectional Area:	5.3
Bankfull Width:	8.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

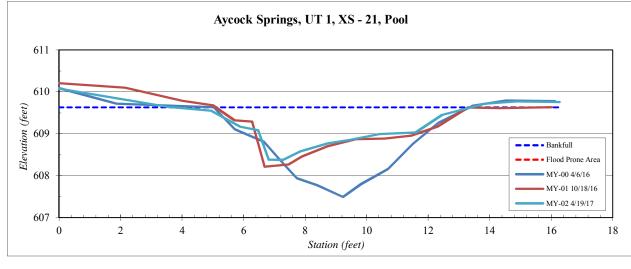
Stream Type


Note: Point bar development appears stable after years 1 and 2 monitoring.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 20, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	607.42
2.1	607.45
3.0	607.33
4.2	607.02
5.0	606.58
5.9	606.54
7.0	606.55
8.4	606.57
9.1	606.77
9.9	606.78
10.4	606.91
11.2	607.30
12.4	607.72
12.5	607.72
13.5	607.79
	1
	1
	1
	1
	1
	1
	1
	1

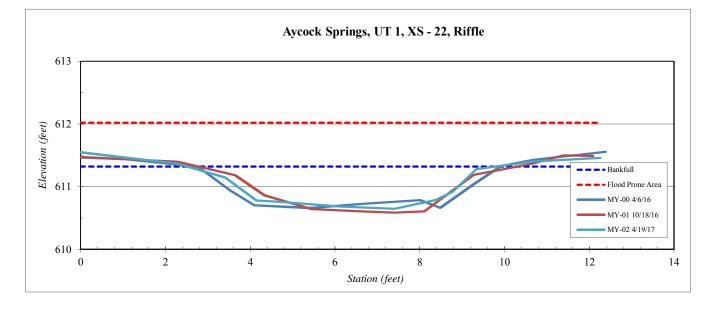
SUMMARY DATA	
Bankfull Elevation:	607.4
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	8.7
Flood Prone Area Elevation:	608.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	15.4
Entrenchment Ratio:	10.3
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 21, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	610.1
3.5	609.6
4.9	609.5
5.9	609.2
6.5	609.1
6.8	608.4
7.3	608.4
7.8	608.6
8.7	608.8
9.5	608.9
10.4	609.0
11.6	609.0
12.5	609.4
13.9	609.7
14.9	609.8
16.3	609.8

Bankfull Elevation:	609.6
Bankfull Cross-Sectional Area:	5.4
Bankfull Width:	9.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA

Stream Type


Note: Point bar development appears stable after years 1 and 2 monitoring.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 22, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	611.55
2.3	611.37
3.4	611.15
4.1	610.78
4.7	610.76
6.1	610.68
7.4	610.65
8.4	610.79
8.8	610.92
9.3	611.28
10.7	611.40
12.3	611.46

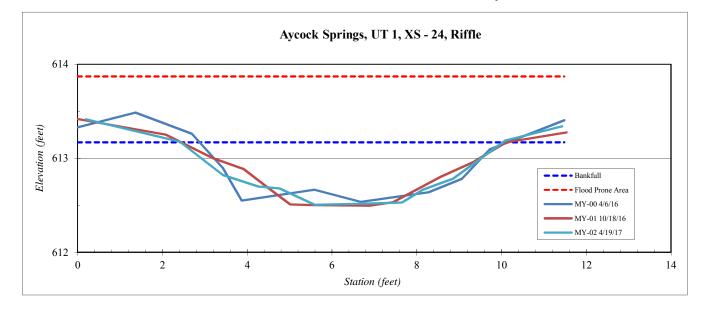
SUMMARY DATA	
Bankfull Elevation:	611.3
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	7.3
Flood Prone Area Elevation:	612.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.1
Entrenchment Ratio:	12.3
Bank Height Ratio:	1.0

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 23, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	613.03
2.3	612.77
3.4	612.45
4.0	612.04
4.7	612.02
6.1	612.01
6.8	611.94
7.1	611.81
7.8	611.81
8.5	611.92
8.9	612.14
10.0	612.48
12.2	612.56

SUMMARY DATA	
Bankfull Elevation:	612.5
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	7.0
Flood Prone Area Elevation:	613.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.3
Entrenchment Ratio:	12.9
Bank Height Ratio:	1.17

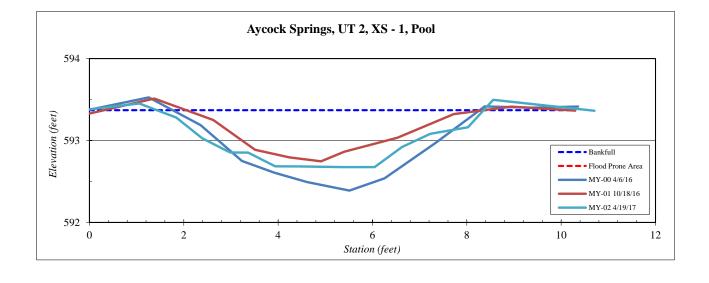
Stream Type C/E Aycock Springs, UT 1, XS - 23, Riffle 614 *Elevation (feet)* 613 **– – – •** Bankfull Flood Prone Area MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 611 2 4 6 8 10 12 0 14 Station (feet)


Note: No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1, XS - 24, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation	
0.2	613.42	
2.4	613.17	
3.4	612.82	
4.3	612.70	
4.8	612.68	
5.6	612.51	
6.6	612.52	
7.7	612.53	
8.1	612.67	
8.9	612.78	
10.1	613.19	
11.4	613.34	

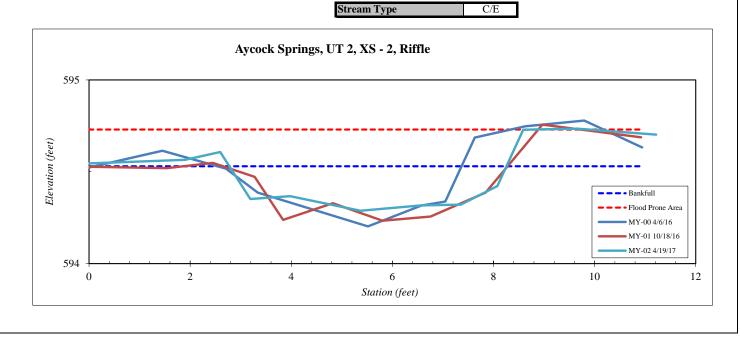
SUMMARY DATA	
Bankfull Elevation:	613.2
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	7.6
Flood Prone Area Elevation:	613.9
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.0
Entrenchment Ratio:	11.8
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 1, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	593.3
1.4	593.5
2.6	593.3
3.5	592.9
4.2	592.8
4.9	592.7
5.4	592.9
6.5	593.0
7.7	593.3
8.9	593.4
10.3	593.4

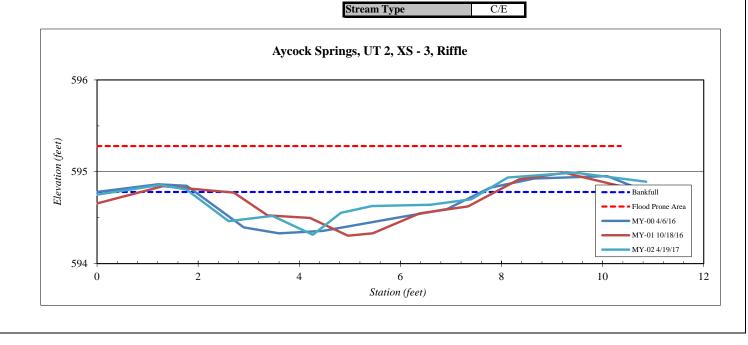
SUMMARY DATA	
Bankfull Elevation:	593.4
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	6.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 2, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	594.03
1.5	594.02
2.4	594.05
3.3	593.97
3.8	593.74
4.8	593.83
5.8	593.73
6.8	593.76
7.8	593.89
9.0	594.26
10.9	594.19

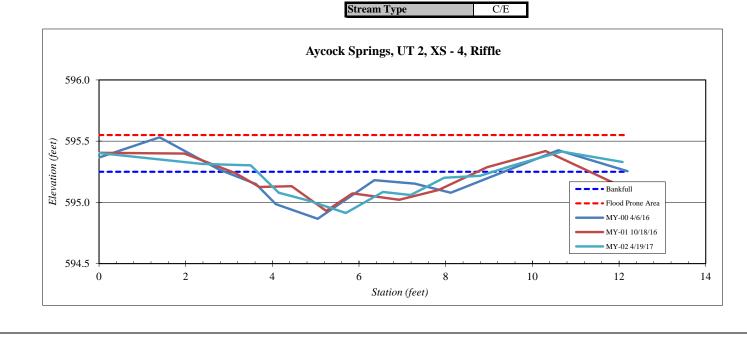
SUMMARY DATA	
Bankfull Elevation:	594.0
Bankfull Cross-Sectional Area:	1.0
Bankfull Width:	5.5
Flood Prone Area Elevation:	594.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.2
Mean Depth at Bankfull:	0.2
W / D Ratio:	30.3
Entrenchment Ratio:	16.4
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 3, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	594.64
1.3	594.84
2.7	594.77
3.4	594.53
4.2	594.50
5.0	594.30
5.5	594.33
6.4	594.55
7.3	594.62
8.3	594.92
9.2	594.99
10.4	594.84

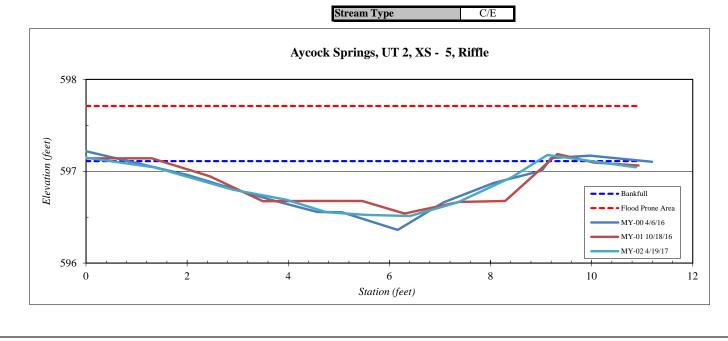
Bankfull Elevation:	594.8
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	5.8
Flood Prone Area Elevation:	595.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.0
Entrenchment Ratio:	15.5
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 4, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.40
2.0	595.40
3.1	595.24
3.7	595.13
4.4	595.13
5.2	594.93
5.8	595.07
6.9	595.02
7.8	595.10
9.0	595.29
10.3	595.42
12.0	595.14

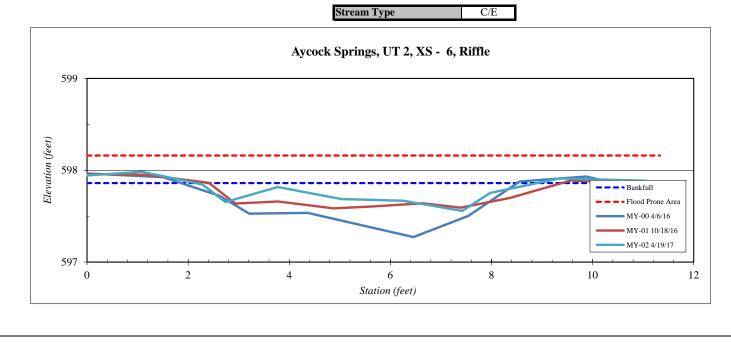
SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	0.9
Bankfull Width:	5.4
Flood Prone Area Elevation:	595.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	32.4
Entrenchment Ratio:	16.7
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 5, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	597.14
1.3	597.14
2.4	596.94
3.5	596.67
4.5	596.68
5.5 6.3	596.68
6.3	596.54
7.4	596.67
8.3	596.68
9.3	597.19
10.0	597.09
10.9	597.06

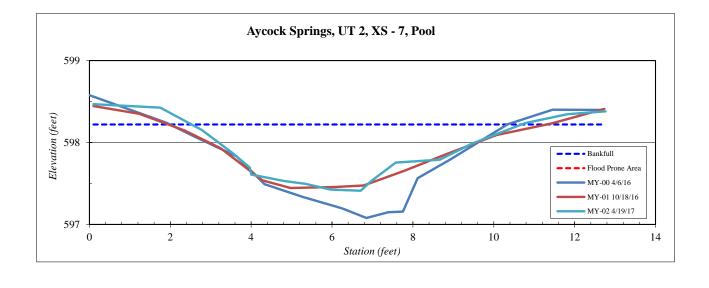
SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	8.5
Flood Prone Area Elevation:	597.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	24.9
Entrenchment Ratio:	10.6
Bank Height Ratio:	1.0



Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 6, Riffle	
Feature	Riffle	
Date:	4/19/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
-0.1	597.96
1.2	597.95
2.4	597.86
2.9	597.64
3.8	597.66
4.9	597.59
5.6	597.61
6.6	597.64
7.4	597.59
8.4	597.70
9.6	597.89
11.3	597.85

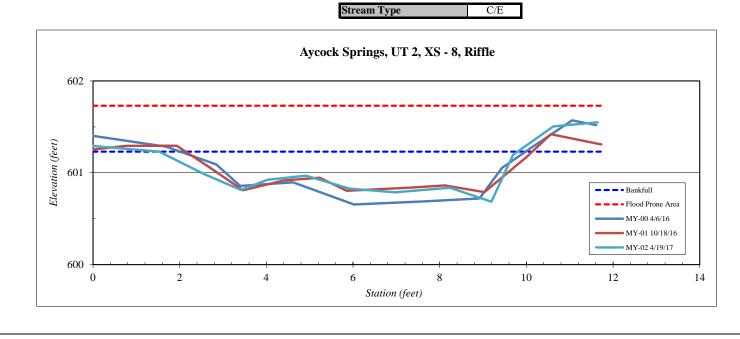
SUMMARY DATA	
Bankfull Elevation:	597.9
Bankfull Cross-Sectional Area:	1.0
Bankfull Width:	6.8
Flood Prone Area Elevation:	598.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.1
W / D Ratio:	46.2
Entrenchment Ratio:	13.2
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 7, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	598.4
1.2	598.4
2.3	598.1
3.2	597.9
4.3	597.5
5.0	597.4
6.1	597.5
6.8	597.5
7.8	597.7
8.8	597.9
10.1	598.1
11.4	598.2
12.7	598.4

Bankfull Elevation:	598.2
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	8.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 8, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

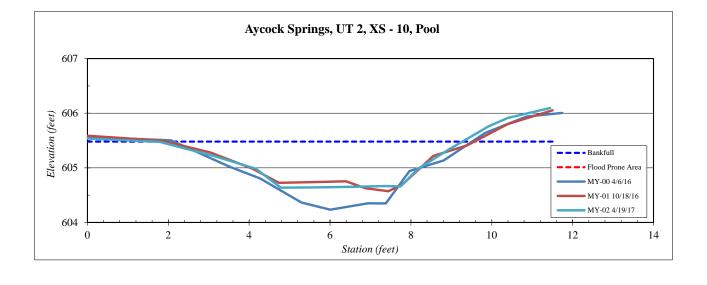
Station	Elevation
0.0	601.25
0.8	601.29
1.9	601.29
2.7	601.05
3.5	600.81
4.4	600.92
5.2	600.95
5.9	600.80
7.3 8.1	600.84
	600.86
9.0	600.79
10.0	601.17
10.6	601.42
11.7	601.31

SUMMARY DATA	
Bankfull Elevation:	601.2
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	8.3
Flood Prone Area Elevation:	601.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	24.6
Entrenchment Ratio:	10.8
Bank Height Ratio:	1.0

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 9, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	604.64
1.6	604.82
2.3	604.54
3.3 4.5	604.23
4.5	604.07
5.7	604.10
7.3	604.26
8.2	604.47
9.0	604.66
10.1	604.94

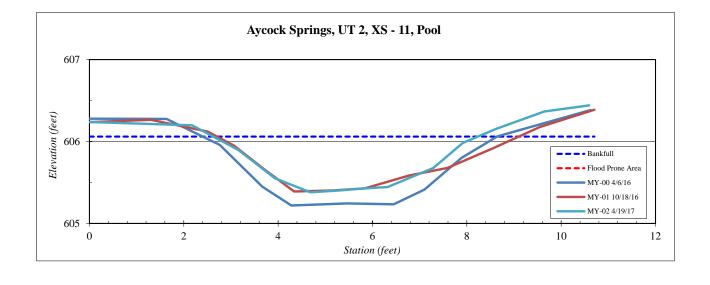
SUMMARY DATA	
Bankfull Elevation:	604.8
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	7.9
Flood Prone Area Elevation:	605.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	14.2
Entrenchment Ratio:	11.4
Bank Height Ratio:	1.0


Stream Type C/E Aycock Springs, UT 2, XS - 9, Riffle 606 Elevation (feet) 609 - · · 🗕 🗕 🗕 • Bankfull - - - Flood Prone Area MY-00 4/6/16 MY-01 10/18/16 MY-02 4/19/17 603 2 10 4 6 8 12 0 Station (feet)

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 10, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	605.6
1.8	605.5
3.0	605.3
4.1	605.0
4.7	604.7
5.6	604.7
6.4	604.8
6.9	604.6
7.4	604.6
7.8	604.7
8.6	605.2
9.4	605.4
10.4	605.8
11.5	606.1

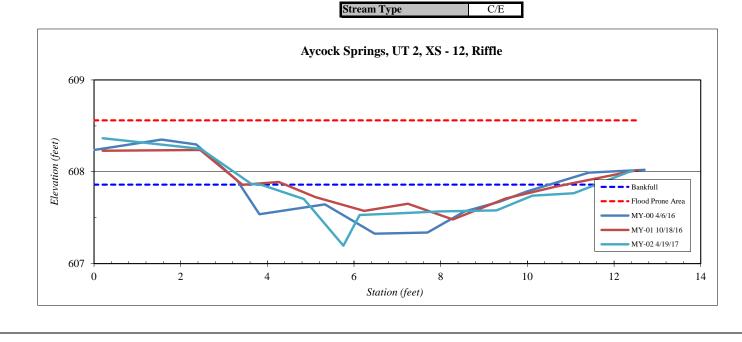
SUMMARY DATA	
Bankfull Elevation:	605.5
Bankfull Cross-Sectional Area:	4.0
Bankfull Width:	7.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 11, Pool
Feature	Pool
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	606.2
1.3	606.3
2.5	606.1
3.1	605.9
3.7	605.7
4.3	605.4
5.2	605.4
5.8	605.4
6.8	605.6
7.6	605.7
8.6	605.9
9.5	606.2
10.7	606.4

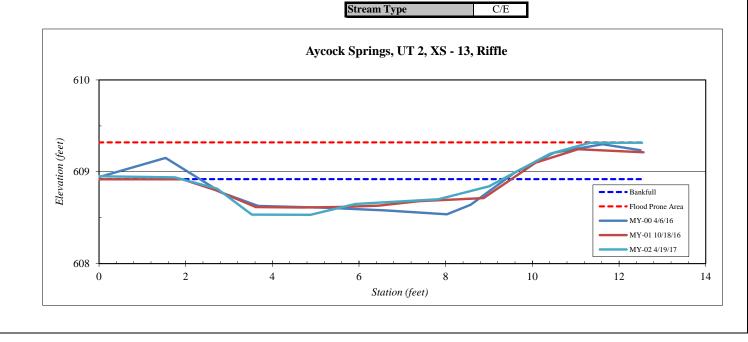
SUMMARY DATA	
Bankfull Elevation:	606.1
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	5.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 12, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	608.23
2.5 3.4	608.24
	607.86
4.3	607.89
5.1	607.72
6.2	607.57
7.2	607.65
8.3	607.48
9.5	607.71
10.6	607.84
12.5	608.02

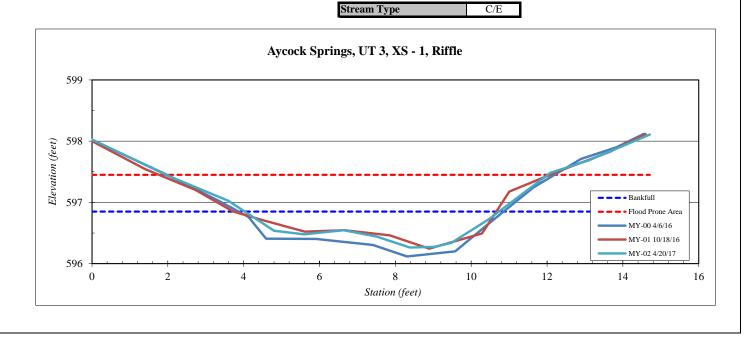
SUMMARY DATA	
Bankfull Elevation:	607.9
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	7.7
Flood Prone Area Elevation:	608.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.2
W / D Ratio:	31.2
Entrenchment Ratio:	11.7
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 13, Riffle
Feature	Riffle
Date:	4/19/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	608.92
1.9	608.92
2.7	608.80
3.6	608.62
4.7	608.61
5.6	608.62
6.4	608.63
7.4	608.68
8.9	608.71
10.1	609.10
11.1	609.25
12.6	609.21

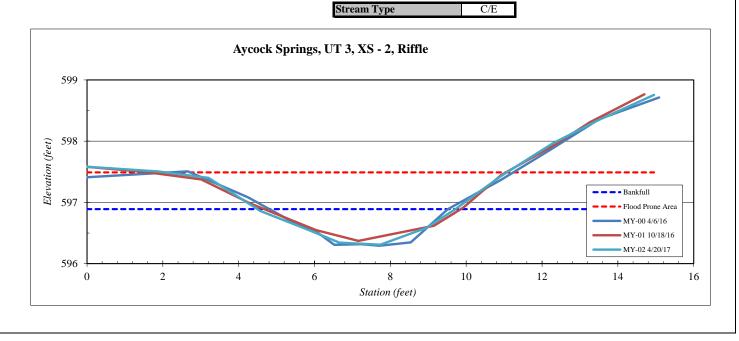
SUMMARY DATA	
Bankfull Elevation:	608.9
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	7.4
Flood Prone Area Elevation:	609.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	30.4
Entrenchment Ratio:	12.2
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 1, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	598.03
2.0	597.44
3.6	597.03
4.8	596.54
5.6	596.48
6.6	596.55
7.5	596.44
8.4	596.26
9.0	596.27
9.5	596.34
10.5	596.72
12.1	597.48
13.1	597.69
14.7	598.11

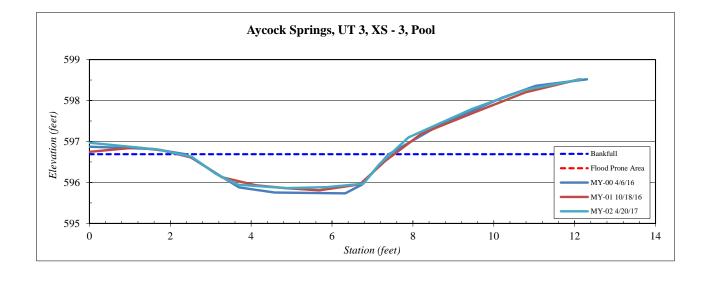
SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	6.7
Flood Prone Area Elevation:	597.5
Flood Prone Width:	11.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.7
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 2, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	597.59
1.9	597.50
3.2	597.40
4.6	596.86
5.7	596.58
6.7	596.34
7.7	596.31
8.9	596.58
9.7	596.89
10.9	597.43
12.3	597.96
13.5	598.34
15.0	598.76

SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	5.2
Flood Prone Area Elevation:	597.5
Flood Prone Width:	8.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	14.2
Entrenchment Ratio:	1.5
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 3, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	597.0
1.7	596.8
2.5	596.6
3.1	596.2
3.7	595.9
4.9	595.9
5.9	595.9
6.8	596.0
7.2	596.4
7.9	597.1
9.5	597.8
10.8	598.3
12.2	598.5

SUMMARY DATA	
Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	5.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

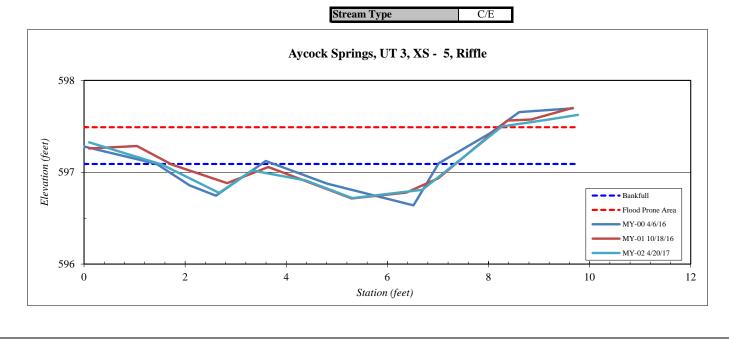
Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 4, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	597.09
1.4	596.99
2.1	596.84
2.6	596.67
4.2	596.88
5.0	596.68
6.1	596.62
7.3	596.62
7.8	596.85
8.8	597.10
9.5	597.26
10.7	597.29
l	

SUMMARY DATA	
Bankfull Elevation:	597.0
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	6.9
Flood Prone Area Elevation:	597.4
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.0
Entrenchment Ratio:	2.9
Bank Height Ratio:	1.0

C/E

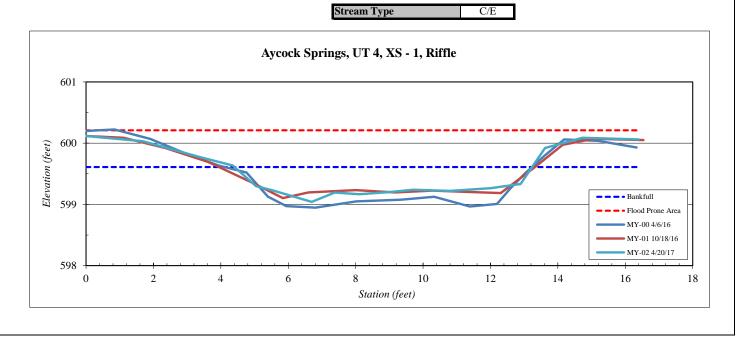
Aycock Springs, UT 3, XS - 4, Riffle 598 Elevation (feet) 597 🗕 🗕 🗕 • Bankfull MY-00 4/6/16 MY-01 10/18/16 MY-02 4/20/17 596 2 10 4 6 8 12 0 Station (feet)


Stream Type

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 5, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	597.33
1.5 2.7	597.09
2.7	596.78
3.3	597.02
4.4	596.91
5.3	596.72
6.7	596.81
7.5 8.3	597.18
8.3	597.50
9.1	597.57
9.8	597.62

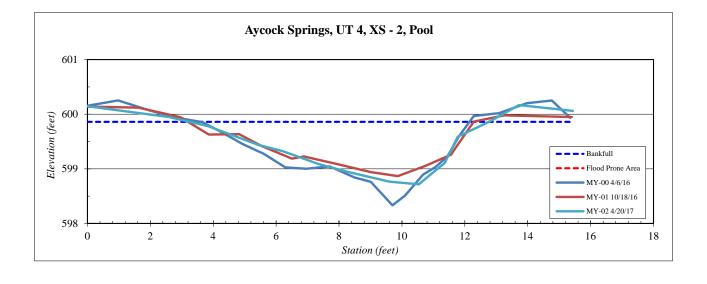
SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	5.8
Flood Prone Area Elevation:	597.5
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.0
Entrenchment Ratio:	3.4
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 1, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	600.12
1.7	600.03
3.3	599.78
4.4	599.63
5.0	599.30
5.5	599.23
6.7	599.04
7.4	599.19
8.1	599.17
9.0	599.20
9.7	599.24
10.8	599.22
12.0	599.26
12.9	599.33
13.6	599.92
14.7	600.09
16.4	600.06

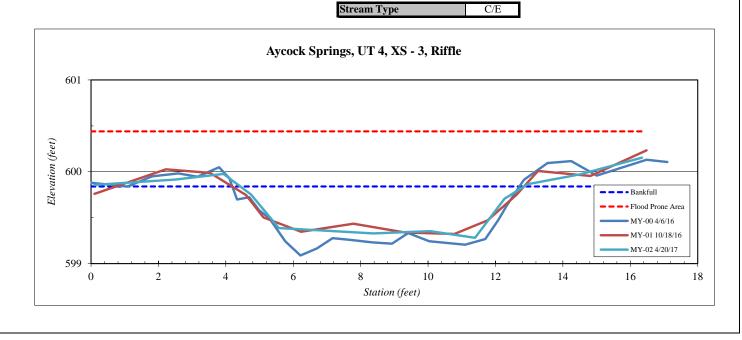
SUMMARY DATA	
Bankfull Elevation:	599.6
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	8.8
Flood Prone Area Elevation:	600.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	23.5
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 2, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	600.1
2.6	599.9
3.8	599.8
5.4	599.4
6.2	599.3
7.4	599.1
8.3	598.9
9.6	598.8
10.5	598.7
11.0	598.9
11.4	599.1
11.8	599.6
12.8	599.9
13.7	600.2
15.4	600.1

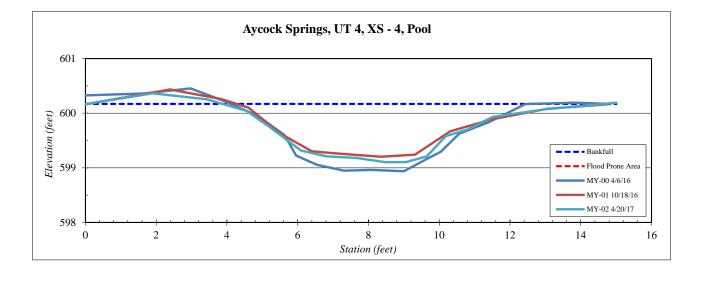
Bankfull Elevation:	599.9
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	9.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 3, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	599.86
2.5	599.92
3.9	599.98
4.7	599.75
5.6	599.39
7.1	599.36
8.4	599.33
10.1	599.35
11.4	599.28
12.3	599.71
13.0	599.86
14.5	599.97
16.3	600.15
l	

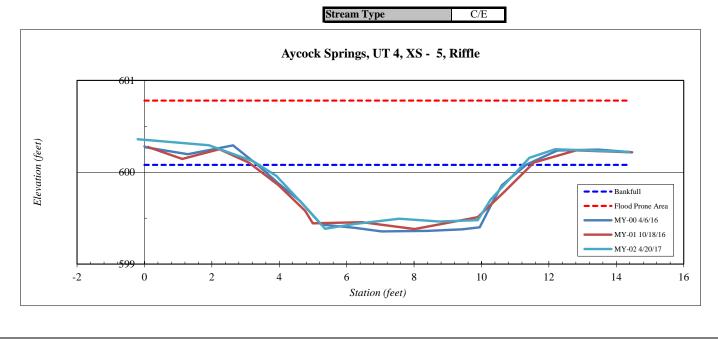
SUMMARY DATA	
Bankfull Elevation:	599.8
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	8.4
Flood Prone Area Elevation:	600.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	20.2
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.0



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 4, Pool
Feature	Pool
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	600.2
1.9	600.4
3.4	600.3
4.6	600.0
5.2	599.8
6.1	599.3
6.8	599.2
7.7	599.2
8.5	599.1
9.1	599.1
9.6	599.2
10.2	599.6
10.8	599.7
11.5	599.9
13.0	600.1
15.0	600.2

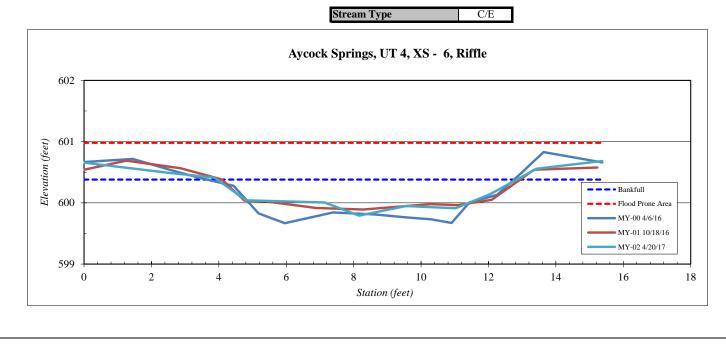
SUMMARY DATA	
Bankfull Elevation:	600.2
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	10.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



A	
Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 5, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	600.36
1.9 3.2	600.29
3.2	600.12
3.9	599.96
4.9	599.59
5.4	599.38
6.2	599.44
7.6	599.49
8.8	599.46
9.9	599.48
10.3	599.70
11.4	600.16
12.2	600.25
14.4	600.22

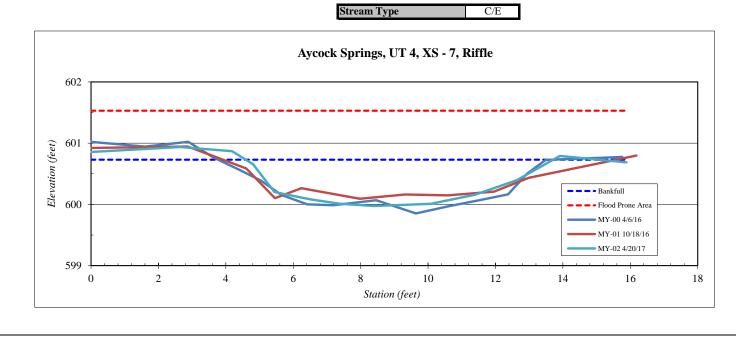
SUMMARY DATA	
Bankfull Elevation:	600.1
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	7.8
Flood Prone Area Elevation:	600.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.0
Entrenchment Ratio:	6.4
Bank Height Ratio:	1.0



Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 4, XS - 6, Riffle	
Feature	Riffle	
Date:	4/20/2017	
Field Crew:	Perkinson, Keith	

Station	Elevation
-0.1	600.66
2.5	600.49
3.9	600.41
4.8	600.04
7.1	600.01
8.2	599.79
9.6	599.95
11.0	599.91
12.1	600.14
13.4	600.56
15.4	600.68

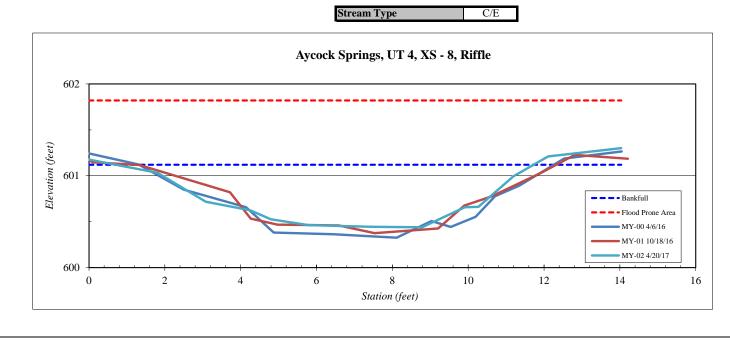
SUMMARY DATA	
Bankfull Elevation:	600.4
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	8.9
Flood Prone Area Elevation:	601.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	24.0
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0

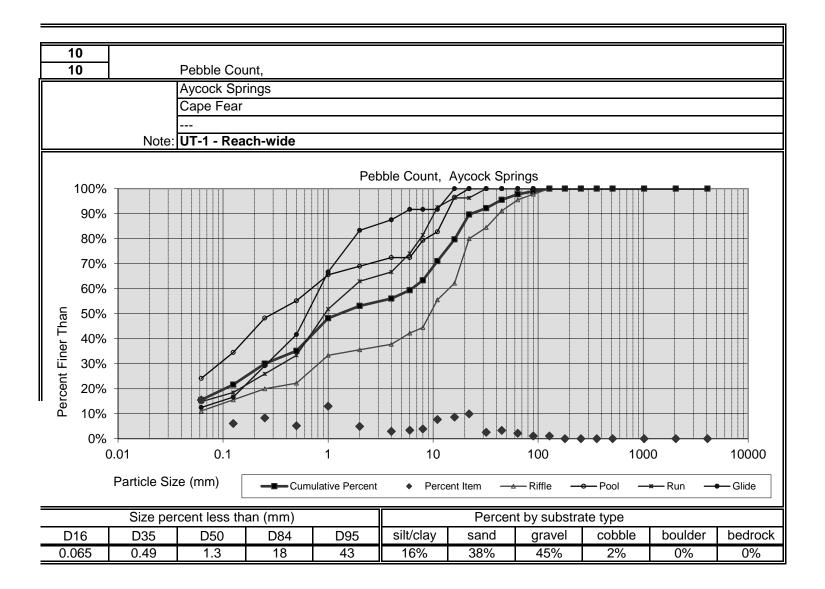


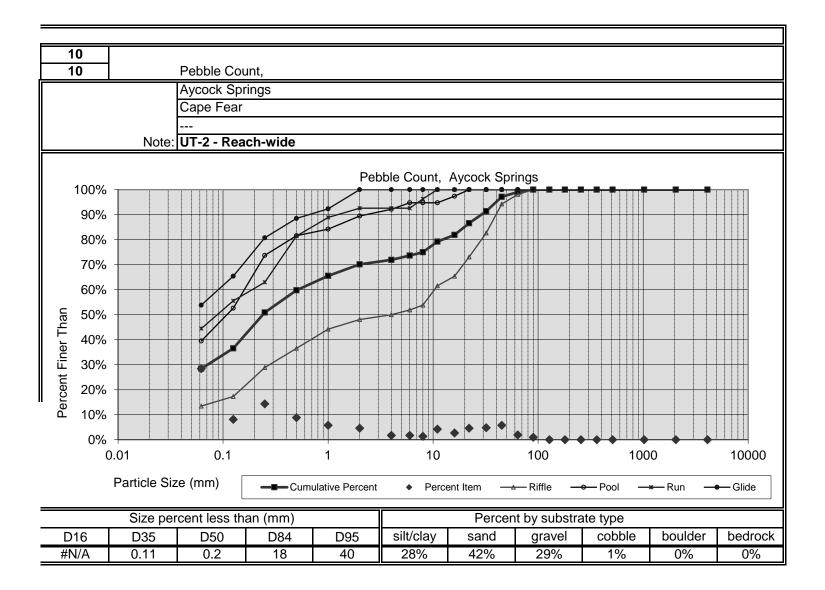
Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 7, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith

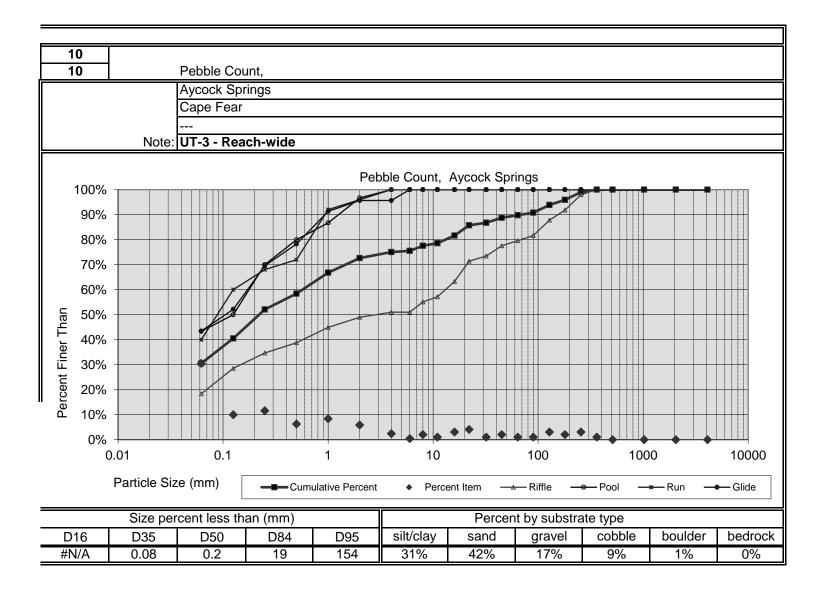
Station	Elevation
0.0	600.86
2.6	600.94
4.2	600.87
4.8	600.65
5.4	600.20
6.5	600.08
7.4	600.01
8.4	599.97
10.1	600.01
11.4	600.16
12.6	600.39
13.9	600.79
15.9	600.69

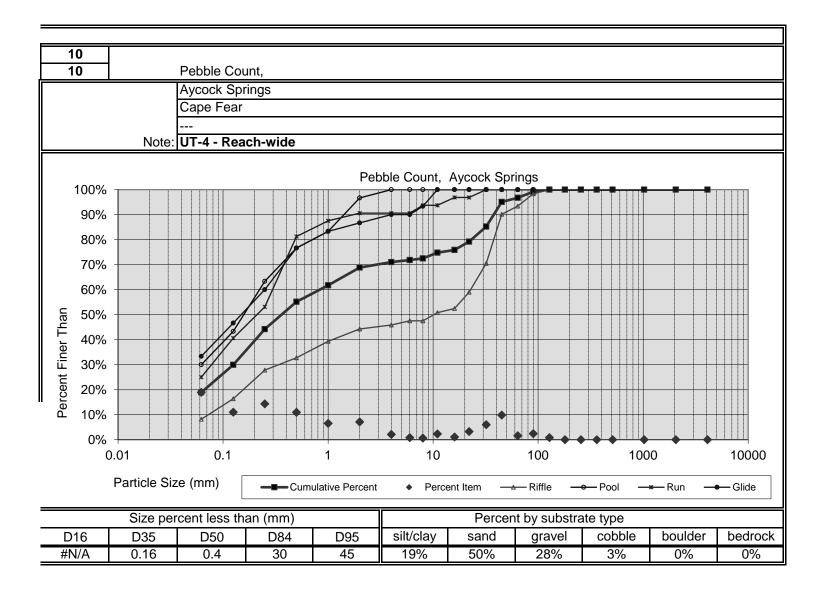
SUMMARY DATA	
Bankfull Elevation:	600.7
Bankfull Cross-Sectional Area:	5.0
Bankfull Width:	9.1
Flood Prone Area Elevation:	601.5
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.6
Entrenchment Ratio:	5.5
Bank Height Ratio:	1.0

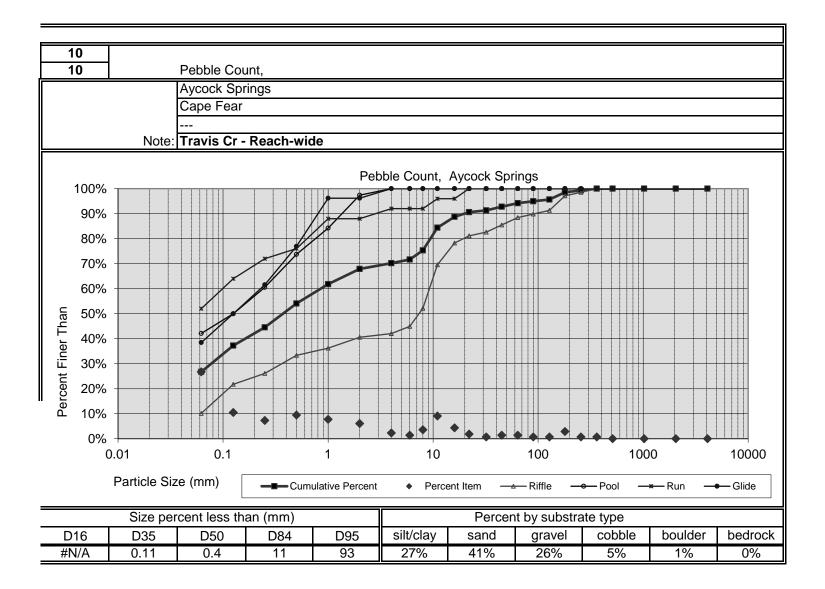



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 8, Riffle
Feature	Riffle
Date:	4/20/2017
Field Crew:	Perkinson, Keith


Station	Elevation
0.0	601.18
1.8	601.03
3.1	600.72
4.2	600.62
4.8	600.53
5.8	600.46
7.5	600.44
8.8	600.44
9.9	600.66
10.3	600.66
11.2	600.99
12.1	601.21
14.0	601.30


SUMMARY DATA	
Bankfull Elevation:	601.1
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	11.0
Flood Prone Area Elevation:	601.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	24.7
Entrenchment Ratio:	4.5
Bank Height Ratio:	1.0





Parameter	USGS Gage Data	Pre-Existing Condition		Project Reference Cedarock Park			Project Reference Cripple Creek			Design			As-built			
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	6.4	9.6	8.0
Floodprone Width (ft)	unavailable for this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project			4.3			8			5.9			4.3	3	6.6	3.9
BF Mean Depth (ft)		0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.4	0.7	0.5
BF Max Depth (ft)		1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.6	1.1	0.7
Width/Depth Ratio		8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	11	19	15
Entrenchment Ratio		1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	9	14	11.3
Bank Height Ratio		1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern												-	-	-		
Channel Beltwidth (ft)		No pattern of riffles and pools due to straightening activties			20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)					11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)					44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile												-	-	-		
Riffle length (ft)			attern of				===			===			===	9	70	16
Riffle slope (ft/ft)			pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.01%	4.33%	2.23%
Pool length (ft)		straigh	itening a	activties			===			===			===	4	23	9
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters																
Valley Length (ft)				===			===			===			===			===
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.37% -			2.58%			0.50%			1.27% -			1.89%
				3.61%									3.35%			
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Cg			E			E			E/C			E/C

Table 11A. Baseline Morphology and Hydraulic SummaryAycock Springs UT 1

Table 11B. Baseline Morphology and Hydraulic Summary

Aycock Springs UT 2

Parameter	USGS Gage Data		re-Exis Conditi	0	-	ect Refe larock F		•	ect Refe ipple Cr			Design			As-built	t
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.8	8.6	7.2
Floodprone Width (ft)	unavailable for this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project			4.3			8			5.9			4.3	1	4.2	2.3
BF Mean Depth (ft)		0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.6	0.3
BF Max Depth (ft)		1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.3	0.8	0.6
Width/Depth Ratio		8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	32	22
Entrenchment Ratio		1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	11	19	13
Bank Height Ratio		1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern																
Channel Beltwidth (ft)		No p	attern c	f riffles	20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			pools o		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straigh	ntening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																
Riffle length (ft)				f riffles			===			===			===	9	23	14
Riffle slope (ft/ft)			pools o		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.00%	5.24%	2.88%
Pool length (ft)		straigh	ntening	activties			===			===			===	5	17	10
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters										•		•				
Valley Length (ft)				===			===			===			===			====
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.37% -			2.58%			0.50%			1.27% ·			3.01%
1 , 7				3.61%									3.35%			1
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Cg			E			E			E/C			E/C

Note: UT 2 is characterized by a spring/seep, with a very small watershed. The channel was constructed with a smaller Bankfull Cross Sectional area to account for the smaller stormwater pulses and controlled discharge. In addition, the lower reaches of the channel are low slope wetlands that elevate the width-to-depth ratio in post construction measurements.

Table 11C. Baseline Morphology and Hydraulic Summary

Parameter **Project Reference Project Reference Pre-Existing USGS Gage Data** Design As-built Condition **Cedarock Park Cripple Creek** Dimension Min Max Med BF Width (ft 4.5 8 12.1 4.6 7.2 8.3 7.8 4.7 5.9 USGS gage data is 4.1 5 8.1 3 6.1 7 7 18 12 15 25 150 150 150 20 70 50 10 20 20 Floodprone Width (ft) unavailable for this 18 BF Cross Sectional Area (ft2) project 2.2 8 5.9 4.3 1.2 2.7 2.1 0.5 1.1 0.5 0.6 0.4 BF Mean Depth (ft) 0.4 0.5 0.8 0.8 0.7 1.5 0.7 0.2 0.4 1 0.8 1.1 1.4 2.3 1.7 0.7 0.9 0.8 0.5 0.6 0.6 BF Max Depth (ft) 1.1 1 1.4 1 Width/Depth Ratio 8.2 12.5 9.9 8 15.1 10.1 4 4.3 4.2 12 16 14 12 26 20 2.5 1.9 2.2 2.6 9 3.3 **Entrenchment Ratio** 1.7 3.6 2.1 24.6 50 37.3 6.4 2 4 1.8 1.2 Bank Height Ratio 3 2 1 1.5 1.3 1 1 1 1 1 1 Wetted Perimeter(ft) === === === === === Hydraulic radius (ft) === === === === === Pattern Channel Beltwidth (ft) No pattern of riffles and 20 38 22.8 15.1 29.2 24.3 23 47 31 23 31 47 pools due to Radius of Curvature (ft) 31 11 27 16.5 8.9 19.4 13.2 14 23 14 31 23 straightening activties 44 47.8 47 94 47 116 68.4 31 74 66 94 66 Meander Wavelength (ft) Meander Width ratio 2.4 4.7 2.8 2.1 4 3.4 3 6 4 3 6 4 Profile No pattern of riffles and 14 Riffle length (ft) === 8 24 === === pools due to 1.00% 5.76% 3.16% 0.00% 1.54% 0.83% 2.77% 6.47% 4.16% 0.52% 2.54% 1.71% Riffle slope (ft/ft) straightening activties Pool length (ft) === === === 6 10 8 25 37.2 39.6 32.4 23 62 23 62 Pool spacing (ft) 69 14 31 31 Substrate d50 (mm) === === === === === d84 (mm) === === === === === Additional Reach Parameters Valley Length (ft) === === === === === Channel Length (ft) === === === === === 1.22 Sinuosity 1.01 1.2 1.1 1.1 Water Surface Slope (ft/ft) 1.53% 2.58% 0.50% 1.27% 0.92% 3.35% BF slope (ft/ft) === === === === === Е Е E/C **Rosgen Classification** Eg E/C

Note: UT 3 is characterized by a pond in the headwaters; therefore, the channel was constructed with a smaller Bankfull Cross Sectional area than other tributaries associated with the project.

Aycock Springs UT 3

Table 11D. Baseline Morphology and Hydraulic SummaryAycock Springs UT 4

Parameter	USGS	Gage	Data		e-Exist Conditio	0	•	ect Refe larock P		•	ect Refe ipple Cr			Design			As-bu	ilt
Dimension	Min			Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	S gage data is 4.8		4.8	11.7	8.3	8	12.1	8.1	3	6.1	4.6	8.7	10	9.4	8	10.9	8.5
Floodprone Width (ft)	unavail	~ 8-8		8	70	39	15	25	18	150	150	150	70	200	150			50
BF Cross Sectional Area (ft2)	р	roject				6.3			8			5.9			6.3	3.5	5.6	4.3
BF Mean Depth (ft)				0.5	1.3	0.8	0.8	1	0.8	0.7	1.5	1.1	0.6	0.8	0.7	0.4	0.6	0.5
BF Max Depth (ft)				0.9	2	1.5	1.1	1.4	1.4	1	2.3	1.7	0.8	1.1	1	0.6	0.9	0.8
Width/Depth Ratio				3.7	23.4	12.4	8	15.1	10.1	4	4.3	4.2	12	16	14	16	22	19
Entrenchment Ratio				1.2	11.5	4.9	1.9	2.2	2.1	24.6	50	37.3	7.5	21.3	16	5	6	6
Bank Height Ratio				1.2	2.4	1.8	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern											1	1			1	•		
Channel Beltwidth (ft)					attern of		20	38	22.8	15.1	29.2	24.3	28	56	38	28	56	38
Radius of Curvature (ft)					pools d		11	27	16.5	8.9	19.4	13.2	17	38	28	17	38	28
Meander Wavelength (ft)				straign	itening a	activties	44	116	68.4	31	74	47.8	56	113	80	56	113	80
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile											I	1			I	1	1	
Riffle length (ft)					attern of				===			===			===	12	35	16
Riffle slope (ft/ft)					pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	1.12%	2.60%	1.67%	0.61%	2.42%	1.28%
Pool length (ft)				straign	itening a	activties			===			===			====	14	42	22
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	28	75	38	28	75	38
Substrate					1	-					1	1		-	1			
d50 (mm)						===			===			===			===			===
						===			===			===			===			===
Additional Reach Parameters					1						I	1			I	1	1	
Valley Length (ft)		ļ				===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.1			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				L		0.93%			2.58%			0.50%			0.93%			0.66%
BF slope (ft/ft)						===			===			===			====			===
Rosgen Classification						Eg			E			E			E/C			E/C

Table 11E. Baseline Morphology and Hydraulic SummaryAycock Springs Travis Creek

Parameter	USG	S Gag	ge Data		re-Exist Conditio	0	•	ect Refei larock P		-	ect Refe ipple Cr			Design	l		As-bu	ilt
Dimension	Min	Max	K Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage	gage data is 30		51.7	41.4	8	12.1	8.1	3	6.1	4.6	25.7	29.6	27.7	25.2	30.3	26.7
Floodprone Width (ft)	unava	8.8		68	160	122	15	25	18	150	150	150	200	300	250			150
BF Cross Sectional Area (ft2)		projec	ct			54.9			8			5.9			54.9	41.3	73.9	51.2
BF Mean Depth (ft)				1.1	1.8	1.4	0.8	1	0.8	0.7	1.5	1.1	1.9	2.1	2	1.6	2.4	2
BF Max Depth (ft)				3.3	4.1	3.7	1.1	1.4	1.4	1	2.3	1.7	2.7	3	2.8	2.3	3.4	2.8
Width/Depth Ratio				16.7	47	32.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	16	13
Entrenchment Ratio				1.6	5.3	3.2	1.9	2.2	2.1	24.6	50	37.3	7.2	10.8	9	5	6	5.6
Bank Height Ratio				1	1.1	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			=			===			===
Pattern																		
Channel Beltwidth (ft)						ffles and	20	38	22.8	15.1	29.2	24.3	83	166	111	83	166	111
Radius of Curvature (ft)					ools due		11	27	16.5	8.9	19.4	13.2	55	111	83	55	111	83
Meander Wavelength (ft)				straigh	ntening a	activties	44	116	68.4	31	74	47.8	166	332	236	166	332	236
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile							-		-									
Riffle length (ft)						ffles and			===			===			===	16	87	54
Riffle slope (ft/ft)					ools due		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	0.28%	0.64%	0.41%	0.00%	0.70%	0.19%
Pool length (ft)				straigi	ntening a	activties			===			===			===	27	70	43
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	83	222	111	83	222	111
Substrate							1	1	•							1		
d50 (mm)						===			===			===			===			===
d84 (mm)			E			===			====			===			===			===
Additional Reach Parameters																		
Valley Length (ft)			F			===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.05			1.2			1.22			1.05			1.05
Water Surface Slope (ft/ft)						NA			2.58%			0.50%			0.23%			0.10%
BF slope (ft/ft)		-				===			===			===			===			===
Rosgen Classification						Fc			E			E			E/C			E/C

Table 12A. Morphology and Hydraulic Monitoring Summary Aycock Travis Creek (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1 R	iffle (Tra	wn)			XS 2 1	Riffle (Travis	s Down))		XS 3 P	ool (T	ravis l	Down)			XS 4	Riffle	(Travis	s Down)		XS 5	Pool (Fravis	Dowr	I)		XS 6 F	Riffle (T	ravis	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY	4 MY5	5 MY 0	MY1	MY2	MY3	MY4 N
BF Width (ft)	26	26.7	26.4				25.2	26.2	26.3				33.7	33.2	35.4				25.5	27	26.5				26	26.7	26				27.3	27.7	26.8	\neg	
Floodprone Width (ft)	150	150	150				150	150	150										150	150	150										150	150	150		
BF Cross Sectional Area (ft2)	41.3	40	40.1				47.5	47.4	47.9				58.7	55.8	57.2				47.2	44.6	43.8				61.4	58.1	52.3				54.9	50.6	50.3		
BF Mean Depth (ft)	1.6	1.5	1.5				1.9	1.8	1.8				1.7	1.7	1.6				1.9	1.7	1.7				2.4	2.2	2.0				2.0	1.8	1.9		
BF Max Depth (ft)	2.3	2.3	2.2				2.5	2.5	2.6				3.7	3.5	3.7				2.5	2.6	2.6				4	3.7	3.2				3	2.9	2.8		
Width/Depth Ratio	16.4	17.8	17.4				13.4	14.5	14.4										13.8	16.3	16.0										13.6	15.2	14.3		
Entrenchment Ratio	5.8	5.6	5.7				6.0	5.7	5.7										5.9	5.6	5.7										5.5	5.4	5.6		
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.04										1.0	1.04	1.04										1.0	1.0	1.0		
Wetted Perimeter (ft)	27.1	27.4	27.2				26.4	27.5	27.3				34.8	34.4	36.4				26.6	28	27.5				27.6	28.2	27.3				28.7	29.1	27.9		
Hydraulic Radius (ft)	1.5	1.5	1.5				1.8	1.7	1.8				1.7	1.6	1.6				1.8	1.6	1.6				2.2	2.1	1.9				1.9	1.7	1.8		
ubstrate																																			
d50 (mm)																																			
d84 (mm)																																			

Parameter		XS 7 P	ool (Trav	vis Dov	vn)			XS 8 F	Riffle (Travis	Down)		XS 9 P	Pool (T	ravis I	Down)			XS 10	Pool (Travis	Down	l)	2	XS 11]	Riffle	Travis	s Down	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	25.9	27.7	25.7				28.1	28.5	28.6				29.3	29.1	29.7				38.6	38.6	39.1				30.3	29.8	30.5			
Floodprone Width (ft)							150	150	150																150	150	150			
BF Cross Sectional Area (ft2)	60	45.8	44.9				64.6	57.4	58.3				65.9	63.1	60.8				100.1	91	87.5				73.9	66.6	69.6			
BF Mean Depth (ft)	2.3	1.7	1.7				2.3	2.0	2.0				2.2	2.2	2.0				2.6	2.4	2.2				2.4	2.2	2.3			
BF Max Depth (ft)	3.9	2.8	2.5				3.3	3.1	3.1				3.7	3.4	3.4				4.3	4.2	4.1				3.4	3.6	3.6			
Width/Depth Ratio							12.2	14.2	14.0																12.4	13.3	13.4			
Entrenchment Ratio							5.3	5.3	5.2																5.0	5.0	4.9			
Bank Height Ratio							1.0	1.0	1.0																1.00	1.06	1.06			
Wetted Perimeter (ft)	27.5	29.1	26.8				29.5	29.7	29.8				30.6	30.3	30.8				40.2	40	40.4				31.8	31.4	32.1			
Hydraulic Radius (ft)	2.2	1.6	1.7				2.2	1.9	2.0				2.2	2.1	2.0				2.5	2.3	2.2				2.3	2.1	2.2			
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12B. Morphology and Hydraulic Monitoring Summary Aycock Travis Creek (Upstream) - Stream and Wetland Restoration Site

Parameter		XS 12	Riffle (T	ravis U	J p)			XS 1	3 Pool	(Travi	is Up)			XS 14	Riffle	(Travi	s Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	29	29.6	29.7				26.9	26.9	27.8				32.8	32.3	31.9			
Floodprone Width (ft)	150	150	150										150	150	150			
BF Cross Sectional Area (ft2)	68.7	66.4	67.9				64.0	50.3	51.9				104.5	92.4	94.6			
BF Mean Depth (ft)	2.4	2.2	2.3				2.4	1.9	1.9				3.2	2.9	3.0			
BF Max Depth (ft)	3.4	3.5	3.5				3.9	3.3	3.2				4.8	4.1	4.5			
Width/Depth Ratio	12.2	13.2	13.0										10.295	11.29	10.76			
Entrenchment Ratio	5.2	5.1	5.1										4.6	4.6	4.7			
Bank Height Ratio	1.00	1.03	1.03										1.0	1.0	1.0			
Wetted Perimeter (ft)	30.4	30.8	30.9				28.8	28.1	28.8				35.0	34.2	33.8			
Hydraulic Radius (ft)	2.3	2.2	2.2				2.2	1.8	1.8				3.0	2.7	2.8			
Substrate																		
d50 (mm)																		
d84 (mm)																		

Table 12C. Morphology and Hydraulic Monitoring SummaryAycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle ((UT 1))			XS	2 Rif	fle (U	Г 1)			X	5 3 Po	ol (UT	[1)			XS	4 Rif	fle (U'	Г 1)			XS	5 5 Rif	fle (UI	ſ 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9.3	9.2	9.7				8.8	9.3	9.2				8.4	8.4	9.3				9.3	9.7	9.3				9.6	9.5	9.3			
Floodprone Width (ft)	90	90	90				90	90	90										90	90	90				90	90	90			
BF Cross Sectional Area (ft2)	5.6	4.7	4.4				4.6	3.7	3.7				6.7	5.6	6.4				6.2	5.5	5.7				6.6	5.9	5.8			
BF Mean Depth (ft)	0.6	0.5	0.5				0.5	0.4	0.4				0.8	0.7	0.7				0.7	0.6	0.6				0.7	0.6	0.6			
BF Max Depth (ft)	1.1	0.8	0.9				0.7	0.6	0.7				1.3	1.2	1.3				1	0.9	0.9				1.1	1.1	1			
Width/Depth Ratio	15.4	18.0	21.4				16.8	23.4	22.9										14.0	17.1	15.2				14.0	15.3	14.9			
Entrenchment Ratio	9.7	9.8	9.3				10.2	9.7	9.8										9.7	9.3	9.7				9.4	9.5	9.7			
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.0										1.0	1.0	1.0				1.0	1.0	1.0			
Wetted Perimeter (ft)	9.7	9.4	10				9	9.4	9.4				8.9	8.9	9.8				9.7	10	9.6				10	10	9.8			
Hydraulic Radius (ft)	0.6	0.5	0.4				0.5	0.4	0.4				0.7	0.6	0.7				0.6	0.6	0.6				0.7	0.6	0.6			
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	(UT 1))			XS	7 Rif	fle (U	Г 1)			XS	5 8 Po	ol (UT	[1)			XS	9 Rifi	fle (U'	Г 1)			XS	10 Po	ool (UT	ſ 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7.5	6.7				7.5	7.2	7.3				7.8	8.7	7.2				7.9	7.2	7.6				7.6	7	6.9			
Floodprone Width (ft)	90	90	90				90	90	90										90	90	90									
BF Cross Sectional Area (ft2)	3.6	1.9	2.2				3.9	2.4	2.4				5.7	4.1	3.6				3	4.1	1.6				4.7	5.6	5.5			
BF Mean Depth (ft)	0.5	0.3	0.3				0.5	0.3	0.3				0.7	0.5	0.5				0.4	0.6	0.2				0.6	0.8	0.8			
BF Max Depth (ft)	0.7	0.4	0.4				0.7	0.6	0.6				1.2	1	0.9				0.7	1.1	0.4				1.1	1.3	1.2			
Width/Depth Ratio	13.2	29.6	20.4				14.4	21.6	22.2										20.8	12.6	36.1									
Entrenchment Ratio	13.0	12.0	13.4				12.0	12.5	12.3										11.4	12.5	11.8									
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.0										1.0	1.0	1.0									
Wetted Perimeter (ft)	7.2	7.6	6.8				7.8	7.3	7.5				8.3	9.1	7.5				8	7.8	7.7				8	7.7	7.7			
Hydraulic Radius (ft)	0.5	0.3	0.3				0.5	0.3	0.3				0.7	0.5	0.5				0.4	0.5	0.2				0.6	0.7	0.7			
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS 1	11 Riffle	(UT 1)			XS	12 Ri	ffle (U	T 1)			XS	5 13 Po	ool (U'	Г 1)			XS	14 Rif	fle (U	T 1)			XS	15 Ri	ffle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.4	7	7.8				8	7.4	6.4				8.6	8	8.3				6.4	6.3	6.3				7.1	7.2	6.3			
Floodprone Width (ft)	90	90	90				90	90	90										90	90	90				90	90	90			
BF Cross Sectional Area (ft2)	3.5	3.5	3.5				3.7	2.8	2.8				6.5	4.3	4.7				3.1	2.8	2.8				4	3.3	2.4			
BF Mean Depth (ft)	0.5	0.5	0.4				0.5	0.4	0.4				0.8	0.5	0.6				0.5	0.4	0.4				0.6	0.5	0.4			
BF Max Depth (ft)	0.8	0.8	0.7				0.7	0.6	0.6				1.2	1.2	1.3				0.7	0.6	0.7				0.9	0.8	0.7			
Width/Depth Ratio	15.6	14.0	17.4				17.3	19.6	14.6										13.2	14.2	14.2				12.6	15.7	16.5			
Entrenchment Ratio	12.2	12.9	11.5				11.3	12.2	14.1										14.1	14.3	14.3				12.7	12.5	14.3			
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.0										1.0	1.0	1.0				1.0	1.0	1.0			
Wetted Perimeter (ft)	7.8	7.3	8.1				8.5	7.6	6.6				9.2	8.5	9.0				6.8	6.5	6.6				7.4	7.6	6.6			
Hydraulic Radius (ft)	0.4	0.5	0.4				0.4	0.4	0.4				0.7	0.5	0.5				0.5	0.4	0.4				0.5	0.4	0.4			
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12C continued. Morphology and Hydraulic Monitoring SummaryAycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS 1	16 Riffl	e (UT	1)			XS	17 Ri	ffle (U	T 1)			XS	18 Rif	ffle (U	T 1)			XS	5 19 Po	ool (U'	Г 1)			XS	20 Rif	fle (U	(T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9	8.3	8.5				8.5	8.1	7.4				7.1	7.2	6.7				7.6	7.7	8.1				9.1	8.5	8.7			
Floodprone Width (ft)	90	90	90				90	90	90				90	90	90										90	90	90			
BF Cross Sectional Area (ft2)	4.6	2.6	2.8				3.9	3.6	3.7				3.5	3.4	3.6				6.5	5.4	5.3				5.3	4.4	4.9			
BF Mean Depth (ft)	0.5	0.3	0.3				0.5	0.4	0.5				0.5	0.5	0.5				0.9	0.7	0.7				0.6	0.5	0.6			
BF Max Depth (ft)	0.8	0.5	0.5				0.7	0.7	0.8				0.6	0.7	0.8				1.3	1	1.1				0.9	0.7	0.8			
Width/Depth Ratio	17.6	26.5	25.8				18.5	18.2	14.8				14.4	15.2	12.5										15.6	16.4	15.4			
Entrenchment Ratio	10.0	10.8	10.6				10.6	11.1	12.2				12.7	12.5	13.4										9.9	10.6	10.3			
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.14				1.0	1.16	1.33										1.0	1.0	1.0			
Wetted Perimeter (ft)	9.3	8.4	8.7				8.7	8.3	7.7				7.4	7.4	7.0				8.2	8.3	8.7				9.4	8.7	9.0			
Hydraulic Radius (ft)	0.5	0.3	0.3				0.5	0.4	0.5				0.5	0.5	0.5				0.8	0.7	0.6				0.6	0.5	0.5			
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	21 Poo	l (UT	1)			XS	22 Rif	ffle (U	T 1)			XS	23 Rif	fle (U	T 1)			XS	24 Ri	ffle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	8.2	9.7				7.2	7.5	7.3				7.6	6.8	7				8	7.7	7.6			
Floodprone Width (ft)							90	90	90				90	90	90				90	90	90			
BF Cross Sectional Area (ft2)	9.3	5.9	5.4				3.6	3.4	3.3				3.2	3.2	3				4	3.2	3.4			
BF Mean Depth (ft)	1.1	0.7	0.6				0.5	0.5	0.5				0.4	0.5	0.4				0.5	0.4	0.4			
BF Max Depth (ft)	2.1	1.4	1.3				0.7	0.7	0.7				0.6	0.6	0.7				0.7	0.7	0.7			
Width/Depth Ratio							14.4	16.5	16.1				18.1	14.5	16.3				16.0	18.5	17.0			
Entrenchment Ratio							12.5	12.0	12.3				11.8	13.2	12.9				11.3	11.7	11.8			
Bank Height Ratio							1.0	1.0	1.0				1.0	1.0	1.17				1.0	1.0	1.0			
Wetted Perimeter (ft)	9.5	9.2	10.4				7.5	7.8	7.5				9.3	7.0	7.2				9.3	7.8	7.8			
Hydraulic Radius (ft)	1	0.6	0.5				0.5	0.4	0.4				0.5	0.5	0.4				0.5	0.4	0.4			
Substrate																								
d50 (mm)																								
d84 (mm)																								

Table 12D. Morphology and Hydraulic Monitoring SummaryAycock UT-2 - Stream and Wetland Restoration Site

Parameter		XS	5 1 Pool	(UT 2	2)			XS	2 Riffle (U	JT 2)			XS	3 Ri	fle (U	J T 2)			XS	4 Riffle	(UT 2)		XS	5 Rif	fle (U	Г 2)			XS	6 Rif	fle (U'	Г 2)	T		X	S 7 Po	ol (UT	2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2 MY	3 MY4	4 MY5	MY 0	MY1	MY	2 MY3	3 MY4	MY5	MY 0	MY1	MY2 N	IY3 M	Y4 MY	75 MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4 N	IY5
BF Width (ft)	6.5	6.3	6.9				4.8	5.6	5.5			5.7	5.3	5.8				6.4	5.7	5.4			8.4	7.7	8.5				6.9	7	6.8				8.3	9.4	8.2	í –		
Floodprone Width (ft)							90	90	90			90	90	90				90	90	90			90	90	90				90	90	90							í T		
BF Cross Sectional Area (ft2)	3.8	2.1	3.2				1	1.1	1			1.7	1.4	1.2				1	0.9	0.9			3.1	2.8	2.9				2.3	1.4	1				5.1	4.1	3.8	1		
BF Mean Depth (ft)	0.6	0.3	0.5				0.2	0.2	0.2			0.3	0.3	0.2				0.2	0.2	0.2			0.4	0.4	0.3				0.3	0.2	0.1				0.6	0.4	0.5	Í		
BF Max Depth (ft)	1	0.6	0.7				0.3	0.3	0.2			0.5	0.5	0.5				0.4	0.3	0.3			0.7	0.6	0.6				0.6	0.3	0.3				1.1	0.8	0.8	Í		
Width/Depth Ratio							23.0	28.5	30.3			19.1	20.1	28.0				41.0	36.1	32.4			22.8	21.2	24.9				20.7	35.0	46.2							Í		
Entrenchment Ratio							18.8	16.1	16.4			15.8	17.0	15.5				14.1	15.8	16.7			10.7	11.7	10.6				13.0	12.9	13.2							í T		
Bank Height Ratio							1.0	1.0	1.0			1.0	1.0	1.0				1.0	1.0	1.0			1.0	1.0	1.0				1.0	1.0	1.0						·	í T		
Wetted Perimeter (ft)	6.9	6.5	7.2			1	4.9	5.7	5.6			5.8	5.4	6.0				6.5	5.7	5.5			8.6	7.9	8.6				7.0	7.0	6.9	1			8.8	9.5	8.4	í – – – – – – – – – – – – – – – – – – –		
Hydraulic Radius (ft)	0.6	0.3	0.4				0.2	0.2	0.2			0.3	0.3	0.2				0.2	0.2	0.2			0.4	0.4	0.3				0.3	0.2	0.1				0.6	0.4	0.5	í		
Substrate																																						í T		
d50 (mm)																																						í T		
d84 (mm)																																						í		
Parameter			8 Riffle	`					9 Riffle (U	,	-				ool (U					11 Pool	<u> </u>	·	_			ffle (U					13 Ri	Ì	,	 						
				MY3	MY4	MY5			MY2 MY	3 MY4	4 MY5				_	3 MY4	MY5				IY3 M	Y4 MY				MY3	MY4	MY5				MY3	MY4	MY5						
BF Width (ft)		8.3	8.3				7.4	7.9	7.9	_		7.5	1	7.6				6.2	6.4	5.6					7.7															
Floodprone Width (ft)	90	90	90				90	90	90														90	90	90				90	90	90									
BF Cross Sectional Area (ft2)		3.1	2.8				4.2	3.8	4.4			5.2		4				3.5	2.7				3.2	2.3	1.9				2.1	1.7										
BF Mean Depth (ft)		0.4	0.3				0.6	0.5	0.6			0.7	0.0	0.5	_			0.6	0.4	0.4			0.4		0.2				0.3	0.2	0.2									
BF Max Depth (ft)		0.5	0.5				0.8	0.7	0.8			1.3	0.7	0.8				0.8	0.7	0.7			0.7		0.7					0.3										
Width/Depth Ratio		22.2	24.6				13.0			_														36.8					24.7											
Entrenchment Ratio		10.8	10.8			 	12.2	11.4	11.4		-												10.8		11.7					11.8										
Bank Height Ratio		1.0	1.0			 	1.0	1.0	1.0		-												1.0		1.0					1.0										
Wetted Perimeter (ft)		8.5	8.6			<u> </u>	7.7	8.1	8.2	_	-	8.1	8.2	8.0				6.6	6.6				8.6		8.0				7.3	7.7			ļ							
Hydraulic Radius (ft)	0.4	0.4	0.3			 	0.5	0.5	0.5	_		0.7	0.5	0.5				0.5	0.4	0.4			0.4	0.2	0.2				0.3	0.2	0.2									
Substrate						 						 															$ \downarrow \downarrow$													
d50 (mm)						 				_																														
d84 (mm)																																								

Table 12E. Morphology and Hydraulic Monitoring SummaryAycock UT-3 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT	3)			XS 2 Riffle (UT 3)				XS	5 3 Po	ol (UT	3)		XS 4 Riffle (UT 3)					XS 5 Riffle (UT 3)								
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	• MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.5	6.9	6.7				4.7	5.2	5.2				5	5.4	5.2				7	6.8	6.9				5.3	5.6	5.8			
Floodprone Width (ft)	10	11	11				20	8	8										20	20	20				20	20	20			
BF Cross Sectional Area (ft2)	2.7	2.3	2.4				1.9	1.6	1.9				3.6	3.2	3.2				2.2	1.9	1.7				1.2	1.1	1.2			
BF Mean Depth (ft)	0.4	0.3	0.4				0.4	0.3	0.4				0.7	0.6	0.6				0.3	0.3	0.2				0.2	0.2	0.2			
BF Max Depth (ft)	0.6	0.6	0.6				0.6	0.5	0.6				1	0.9	0.8				0.5	0.4	0.4				0.5	0.4	0.4			
Width/Depth Ratio	15.6	20.7	18.7				11.6	16.9	14.2										22.3	24.3	28.0				23.4	28.5	28.0			
Entrenchment Ratio	1.5	1.6	1.6				4.3	1.5	1.5										2.9	2.9	2.9				3.8	3.6	3.4			
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.0										1.0	1.0	1.0				1.0	1.0	1.0			
Wetted Perimeter (ft)	6.8	7.1	6.9				5.0	5.3	5.4				5.7	5.8	5.7				7.1	6.9	7.0				5.7	5.8	6.0			
Hydraulic Radius (ft)	0.4	0.3	0.3				0.4	0.3	0.4				0.6	0.6	0.6				0.3	0.3	0.2				0.2	0.2	0.2			
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 12F. Morphology and Hydraulic Monitoring Summary Aycock UT-4 - Stream and Wetland Restoration Site

Parameter	XS 1 Riffle (UT 4)					X	S 2 Po	ol (UT	· 4)			XS	3 Rif	fle (U	Г 4)			X	S 4 Po	ol (UT	(4)		XS 5 Riffle (UT 4)							
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	9.4	8.8				8.5	9.1	9.5				8.6	8.7	8.4				8.5	10.6	10.7				8	8.3	7.8			
Floodprone Width (ft)	50	50	50										50	50	50										50	50	50			
BF Cross Sectional Area (ft2)	3.7	3.3	3.3				6.4	5.4	5.8				4.3	3.4	3.5				6.2	5.2	5.6				4.3	4.1	3.8			
BF Mean Depth (ft)	0.4	0.4	0.4				0.8	0.6	0.6				0.5	0.4	0.4				0.7	0.5	0.5				0.5	0.5	0.5			
BF Max Depth (ft)	0.6	0.5	0.6				1.5	1	1.1				0.8	0.5	0.6				1.2	1	1.1				0.7	0.7	0.7			
Width/Depth Ratio	18.6	26.8	23.5										17.2	22.3	20.2										14.9	16.8	16.0			
Entrenchment Ratio	6.0	5.3	5.7										5.8	5.7	6.0										6.3	6.0	6.4			
Bank Height Ratio	1.0	1.0	1.0										1.0	1.0	1.0										1.0	1.0	1.0			
Wetted Perimeter (ft)	8.6	9.5	9.0				9.2	9.5	10.0				9.0	8.8	8.6				9.1	10.9	11.1				8.3	8.5	8.1			
Hydraulic Radius (ft)	0.4	0.3	0.4				0.7	0.6	0.6				0.5	0.4	0.4				0.7	0.5	0.5				0.5	0.5	0.5			
Substrate																														
d50 (mm)																														
d84 (mm)																														

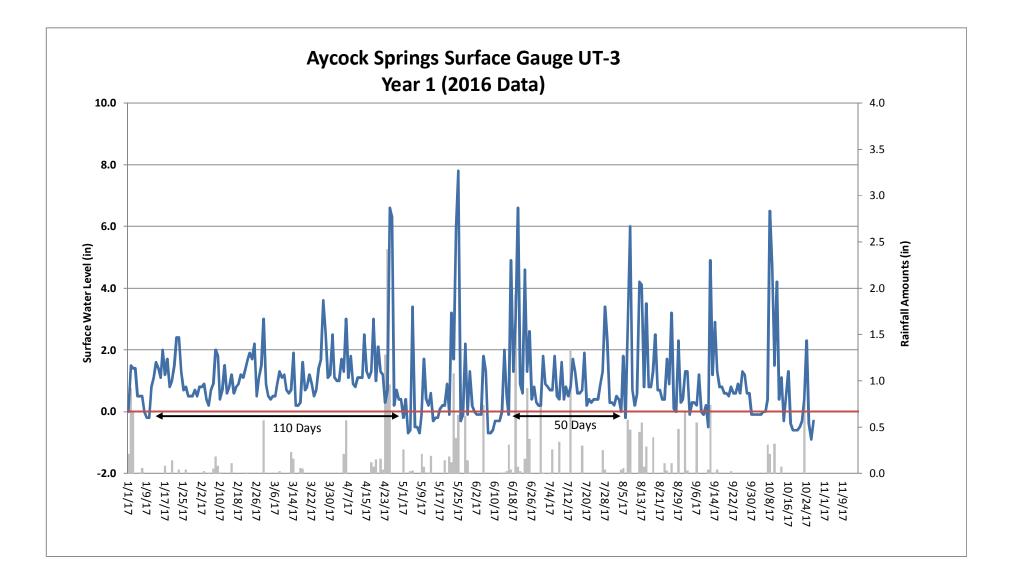
Parameter		XS 6 Riffle (UT 4)					XS 7 Riffle (UT 4)						XS 8 Riffle (UT 4)					
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.1	8.9	8.9				9.9	11.7	9.1				10.9	11.1	11			
Floodprone Width (ft)	50	50	50				50	50	50				50	50	50			
BF Cross Sectional Area (ft2)	3.5	3.3	3.3				5.6	4.9	5				5.6	4.9	4.9			
BF Mean Depth (ft)	0.4	0.4	0.4				0.6	0.4	0.5				0.5	0.4	0.4			
BF Max Depth (ft)	0.6	0.5	0.6				0.9	0.6	0.8				0.8	0.7	0.7			
Width/Depth Ratio	18.7	24.0	24.0				17.5	27.9	16.6				21.2	25.1	24.7			
Entrenchment Ratio	6.2	5.6	5.6				5.1	4.3	5.5				4.6	4.5	4.5			
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.0				1.0	1.0	1.0			
Wetted Perimeter (ft)	8.4	9.0	9.0				10.2	11.9	9.4				11.1	11.3	11.2			
Hydraulic Radius (ft)	0.4	0.4	0.4				0.6	0.4	0.5				0.5	0.4	0.4			
Substrate																		
d50 (mm)																		
d84 (mm)																		

APPENDIX E

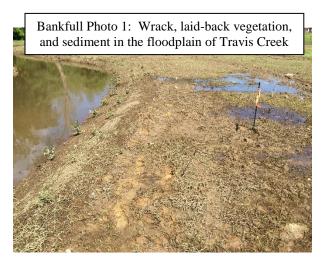
HYDROLOGY DATA

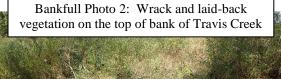
Table 13. UT3 Channel EvidenceStream Gauge GraphsTable 14. Verification of Bankfull EventsGroundwater Gauge GraphsTable 15. Groundwater Hydrology Data

UT3 Channel Evidence	Year 1 (2016)	Year 2 (2017)
Max consecutive days channel flow	37	110
Presence of litter and debris (wracking)	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes
Water staining due to continual presence of water	Yes	Yes
Formation of channel bed and banks	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No
Other:		


 Table 13. UT3 Channel Evidence

2017 Year 2 Monitoring Report (Contract No. 5791) Aycock Springs Stream and Wetland Restoration Site Alamance County, North Carolina

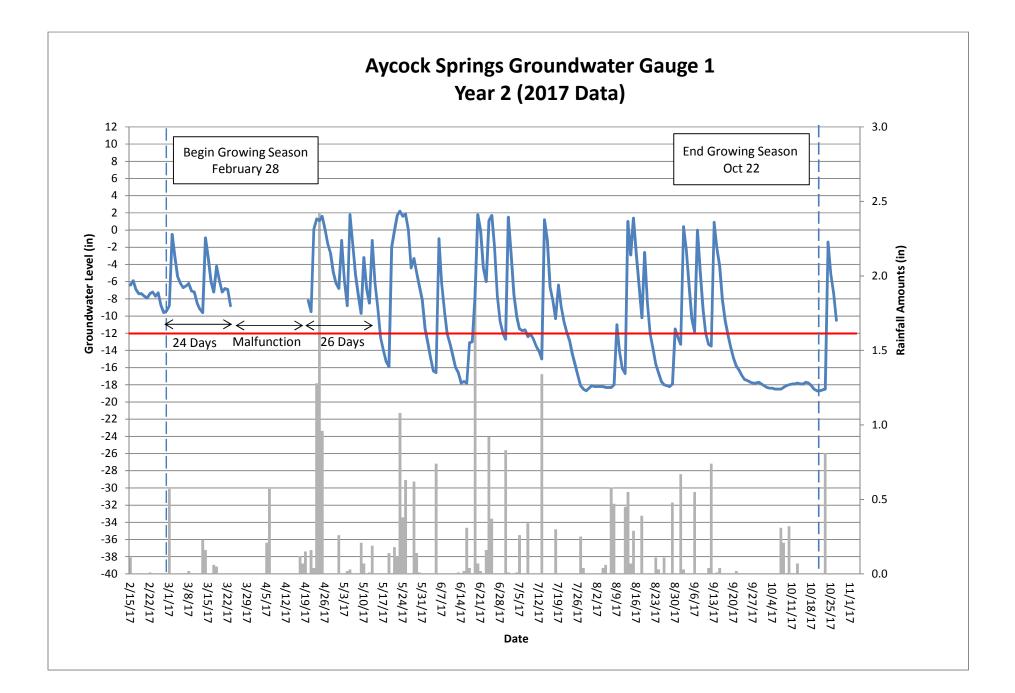

Appendices Restoration Systems, LLC

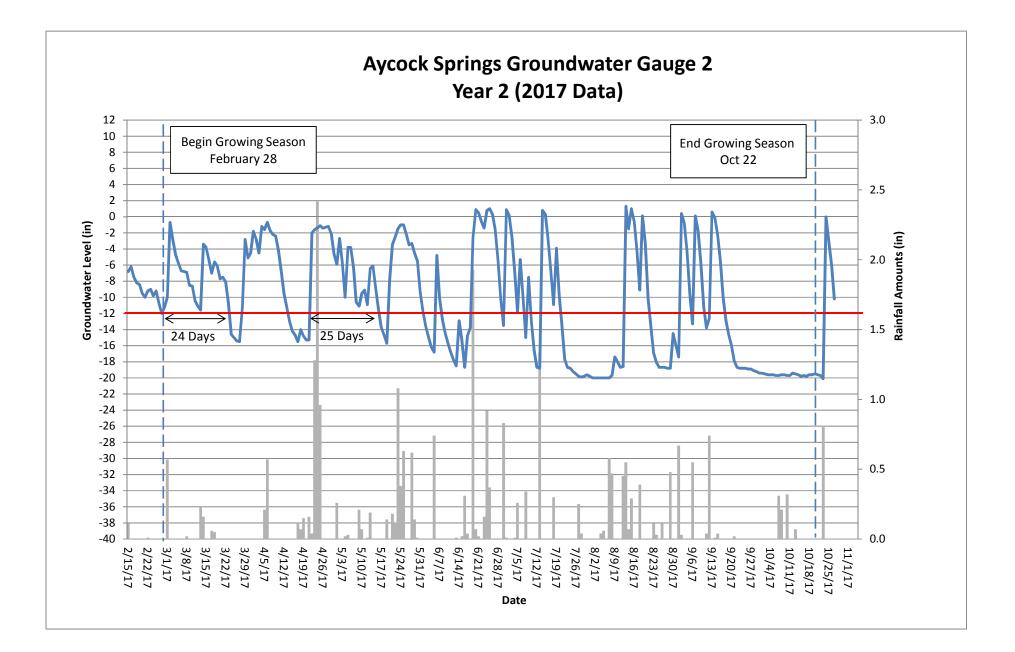


Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 5, 2016	May 3, 2016	Wrack, laid-back vegetation, sediment, and standing water observed in the floodplain after 1.55 inches of rain documented* on May 3, 2016 at a nearby rain gauge.	1
October 13, 2016	September 28, 2016	2.05 inches of rain was recorded on September 28, 2016 at an onsite rain gauge.	
October 13, 2016	October 8, 2016	Wrack and laid-back vegetation observed on top of bank after 3.05 inches of rain was recorded on October 8, 2016 at an onsite rain gauge.	2
June 15, 2017	April 25, 2017	4.66 inches of rain was recorded between April 23 and 25, 2017 at an onsite rain gauge.	
October 27, 2017	June 19, 2017	Wrack and laid back vegetation observed in the floodplain of Travis Creek after 1.93 inches of rain was recorded on June 19, 2017 at an onsite rain gauge	3

 Table 14. Verification of Bankfull Events

*The onsite rain gauge was installed on May 18, 2016, therefore rain data from a nearby Site (Abbey Lamm Stream and Wetland Mitigation Site) was used to confirm this bankfull event.


Bankfull Photo 3: Wrack and laid-back vegetation around a cross-section marker in the floodplain of Travis Creek


Appendices Restoration Systems, LLC

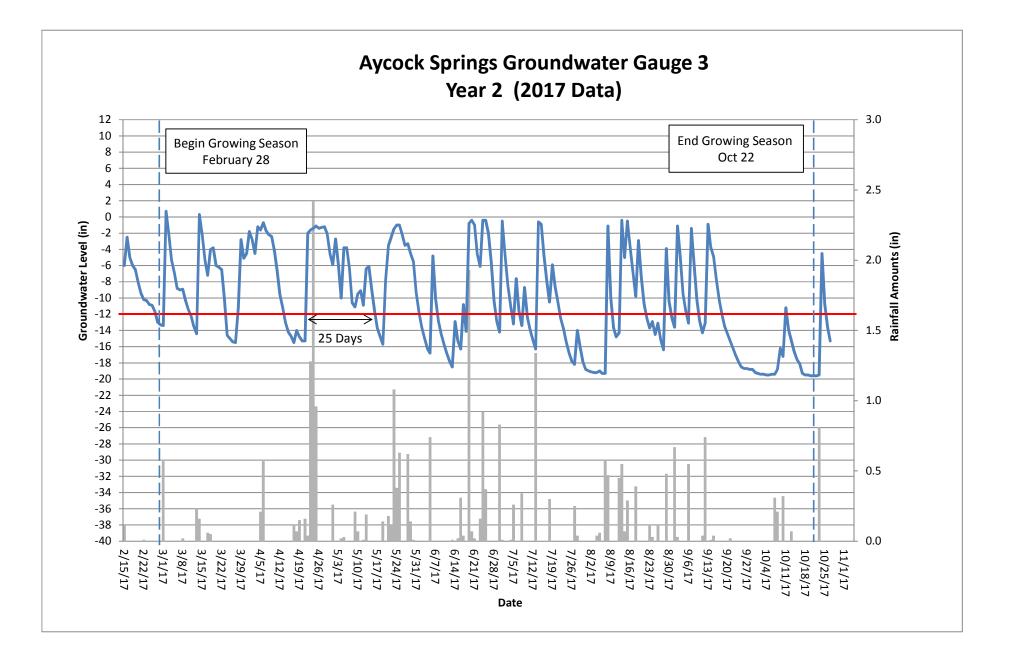

	Success (Criteria Achieved	d/Max Consec	utive Days Du	ring Growing	Season (Perce	ntage)
Gauge	Year 1* (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)	Year 5 (2020)	Year 6 (2021)	Year 7 (2022)
1	Yes/55 days (29.1 percent)	Yes/26 days (11.0 percent)					
2	Yes/46 days (24.3 percent)	Yes/25 days (10.5 percent)					
3	Yes/44 days (23.3 percent)	Yes/25 days (10.5 percent)					

 Table 15. Groundwater Hydrology Data

*Due to Site construction activities, groundwater gauges were not installed until May 5, 2016; therefore, the growing season for Year 1 (2016) is based on the soil survey start date of April 17. It is expected that all gauges would meet success criteria at the beginning of the growing season.

APPENDIX F BENTHIC DATA

Results Habitat Assessment Data Sheets AXIOM ENVIRONMENT AYCOCK PROJECT, BENTHIC MACROINVERTEBRATES COLLECTED FORM ALAMANCE COUNTY, NC, 6/15/2017.

PAI ID NO			50157	50158	50159
STATION			UT-1	UT-2	UT-4
DATE			6/15/2017	6/15/2017	6/15/2017
	TOLERANCE	FUNCTIONAL			
SPECIES	VALUE	FEEDING GROUP			
MOLLUSCA					
Gastropoda					
Basommatophora					
Physidae					
Physella sp.	8.7	CG	2	1	3
ANNELIDA					_
Oligochaeta		CG			
Lumbriculida					
Lumbriculidae		CG		3	
Hirudinea		P			
Arhynchobdellida		-			
Erpobdellidae		Р			1
ARTHROPODA		-			-
Crustacea					
Ostracoda			1		
Isopoda					
Asellidae		SH			
Caecidotea sp.	8.4	CG	3	5	1
Amphipoda		CG	5	5	1
Crangonyctidae					
Crangonyx sp.	7.2	CG		1	
Decapoda	7.2	00		1	
Cambaridae					
Procambarus sp.	9.3	SH	1		
Insecta	5.5	30	L		
Collembola					
Isotomidae				1	
				1	
Ephemeroptera		00			
Caenidae	6.8	CG CG	26		
Caenis sp.	0.0	6	36		
Odonata					
Coenagrionidae	9.5	Р	- -		4
Ischnura sp.	3.5		5		1
Libellulidae		Р		1	4
Plathemis lydia	9.8				1
Somatochlora tenebrosa	8.9	Р		1	
Hemiptera					
Belostomatidae			1		
Corixidae		PI	1		
Coleoptera					

AXIOM ENVIRONMENT AYCOCK PROJECT, BENTHIC MACROINVERTEBRATES COLLECTED FORM ALAMANCE COUNTY, NC, 6/15/2017.

PAI ID NO			50157	50158	50159
STATION			UT-1	UT-2	UT-4
DATE			6/15/2017	6/15/2017	6/15/2017
	TOLERANCE	FUNCTIONAL			
SPECIES	VALUE	FEEDING GROUP			
Dytiscidae		Р			
Laccophilus fasciatus rufus	9.8	Р	1		
Hydrophilidae		Р	2	1	
Tropisternus sp.	9.3	Р	6	1	3
Diptera					
Ceratopogonidae		Р			1
Chironomidae					
Conchapelopia sp.	8.4	Р	1		
TOTAL NO. OF ORGANISMS			60	15	11
TOTAL NO. OF TAXA			12	9	7
EPT INDEX			1	0	0
BIOTIC INDEX Assigned values			8.08	8.47	9.08

3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams Aycock UT-1

TOTAL SCORE

Biological Assessment Unit, DWQ

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream UT to Travis Creek Location/road: Off Gibsonville (Road Name)County Alamance

County
Date 0/15/17 CC# 03030002 Basin Cape Fear Subbasin 03-06-02
Observer(s) Revenue Type of Study: Sight Fish Benthos Basinwide Special Study (Describe)
Latitude <u>3C,129077</u> Longitude <u>-79.521127</u> Ecoregion: \Box MT \not P \Box Slate Belt \Box Triassic Basin
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 20 %Active Pasture % Active Crops %Fallow Fields %Commercial %Industrial 20 %Active Pasture % Active Crops
Watershed land use : р Forest 🛱 Agriculture 🗆 Urban 🗖 Animal operations upstream
Width: (meters) Stream 0.5 Channel (at top of bank) 1.5 Stream Depth: (m) Avg 0.1 Max 0.3 Width variable \Box Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 0.5
Bank Angle:
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
Weather Conditions: hot summer Photos: DN DY Digital 35mm
Remarks: <u>Respiration Project</u> ; fish (small minipous) abundant; water beetles, <u>crantish</u> , water finiters, algae present; abundance of leggs on under side of vocks; abundance of sharls

B. channel natural, infrequent bends (channelization could be old)
D. more extensive channelization, >40% of stream disrupted
E. no bends, completely channelized or rip rapped or gabioned, etc
E. no bends, completely channelized or rip rapped or gabioned, etc
\Box Evidence of dredging \Box Evidence of despagging=no large woody debris in stream. \Box Banks of uniform shape/height
L'idence of declaging Elvidence of deshagging-no large woody deons in stream Elbanks of dimonit shape neight
Remarks Restoration reach Subtotal 5

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

<u>C</u> Rocks <u>A</u> Macrophytes <u>R</u> Sticks and leafpac	ks	Snags and logs $\underline{\mathcal{C}}$	_Undercut ban	iks or root	mats
AMOUNT OF REACH FAVO	RABLE	FOR COLONIZA	TION OR CO	VER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
l type present	17	13	9	5	
No types present	0				
□ No woody vegetation in riparian zone Remarks_					Subtotal 6
III. Bottom Substrate (silt, sand, detritus, gravel, cobbl riffle for embeddedness, and use rocks from all parts of rif					but only look at
A. substrate with good mix of gravel, cobble a					<u>Score</u>
1 embeddedness <20% (very little sand	usually	only behind large be	ulders)		15

1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	Ц	
3. embeddedness 40-80%	6	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand	3	
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	
Remarks	Subtotal_	9

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	\bigcirc
a. variety of pool sizes	(10)
b. pools about the same size (indicates pools filling in)	
2. Pools Infrequent (<30% of the 200m area surveyed)	5
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	0
/	Subtotal
□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk □ Silt bottom □ Some pools over	wader depth
Remarks	

Page Total 37

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent	Riffles Infrequent
Score	Score
A, well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16	12
B. riffle as wide as stream but riffle length is not 2X stream width	7
C. riffle not as wide as stream and riffle length is not 2X stream width 10	3
D. riffles absent	
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	Subtotal 10
MI Deal Cock/Record Venetation	
VI. Bank Stability and Vegetation FACE UPSTREAM Left E	Bank Rt. Bank
	Score Score
A. Banks stable	$\hat{\mathbf{D}}$
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. 7	
B. Erosion areas present	
1. diverse trees, shrubs, grass; plants healthy with good root systems	
2. few trees or small trees and shrubs; vegetation appears generally healthy	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident0	
	Total 14

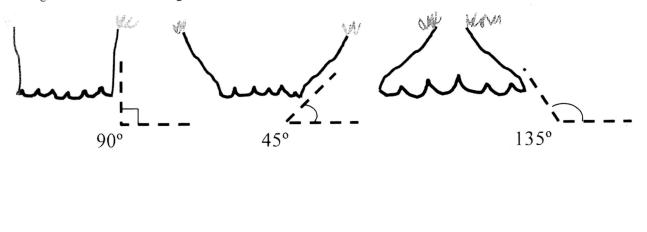
Remarks

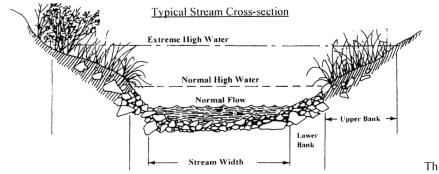
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	2
D. Stream with minimal canopy - full sun in all but a few areas	(2)
E. No canopy and no shading	0
Remarks leave 2 post vestoration.	Subtotal 2

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.


FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Uveds/old field Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	4)	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0
Remarks tean 2 post vistor at on	Т	otal 🛛


Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Page Total 40

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

This side is 45° bank angle.

¢. . . .

Site Sketch:

Other comments:

3/06 Revision 6

Aycock - UT-Z

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ

TOTAL SCORE 79

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream UT to Tavis Creek Location/road: Of Gibsonville Ossippe (Road Name)County Alamance
Date 6/15/11 CC# 030 30007 Basin Cape Fear Subbasin 03-06-07 Observer(s) Furtions Type of Study: Fish ABenthos Basinwide Special Study (Describe)
Observer(s) PUTKING Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude <u>36.128128</u> Longitude <u>-79.521813</u> Ecoregion: \Box MT 💢 P \Box Slate Belt \Box Triassic Basin
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 90 %Active Pasture % Active Crops %Fallow Fields % Commercial %Industrial %Other - Describe:
Watershed land use : 🛛 🖾 Agriculture 🗆 Urban 🗖 Animal operations upstream
Width: (meters) Stream 0.3 Channel (at top of bank) S Stream Depth: (m) $Avg_{0.025}^{0.025} Max_{0.05}^{0.05}$ Width variable \Box Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) $0.25-0.5$
Bank Angle : $\frac{145}{100}$ or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) \Box Channelized Ditch
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures □Exposed bedrock □ Excessive periphyton growth □Heavy filamentous algae growth □Green tinge □Sewage smell Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □Sediment/grade-control structure □Berm/levee Flow conditions: □High □Normal □Low
Turbidity: 🛛 Clear 🗆 Slightly Turbid 🛛 Turbid 🖓 Tannic 🖉 Milky 🖓 Colored (from dyes)
Good potential for Wetlands Restoration Project?? DYES DNO Details Withation Ste
Channel Flow Status
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
E. Very little water in channel, mostly present as standing pools
Weather Conditions: hot Survey Photos: DN DY Digital D35mm
Remarks: aquatic vegetation in channel is abundant; abundance of tadpoks;

42

I. Channel Modification	Seore
A. channel natural, frequent bends	(5)
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/h	eight _
RemarksSub	ototal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

Rocks A_Macrophytes R Sticks and leafpack	usS	Snags and logs <u>A</u>		ks or root	mats
AMOUNT OF REACH FAVO	RABLE	FOR COLONIZA	TION OR COV	/ER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	$(2\dot{0})$	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				00
□ No woody vegetation in riparian zone Remarks_					Subtotal 20

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Scor	<u>e</u>
1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	Ц	
3. embeddedness 40-80%	(6)	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand	3	
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	10
Remarks	Subtotal_	Ø

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	10
b. pools about the same size (indicates pools filling in)	(8)
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	0 0
/ Sub	total ()
	1 1

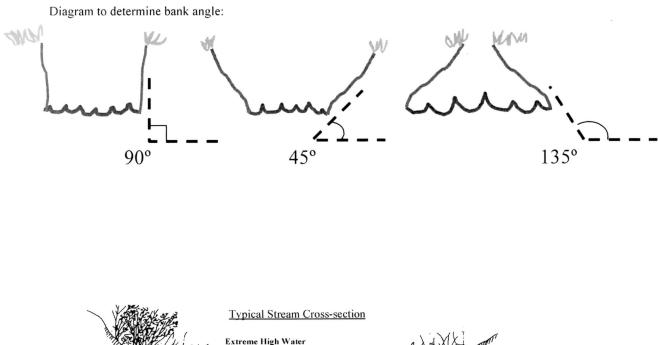
□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk ☑ Silt bottom □ Some pools over wader depth Remarks______

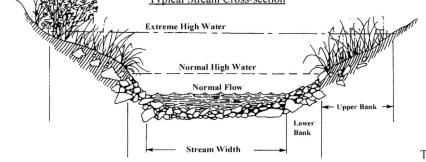
V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles I	Frequent	Riffles I	nfrequent
	Score	Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	(16)	12	
B. riffle as wide as stream but riffle length is not 2X stream width	14	7	
C. riffle not as wide as stream and riffle length is not 2X stream width	10	3	
D. riffles absent.	0		110
Channel Slope: ŹTypical for area □Steep=fast flow □Low=like a coastal stream		Sub	total <u>I</u>
VI. Bank Stability and Vegetation			
EACE LIDSTDEAM	I.	oft Donk	Dt Donk

FACE UPSTREAM	Left Bank	Rt. Bank
	Score	Score
A. Banks stable	6	
1. little evidence of erosion or bank failure(except outside of bends), little potential for en	osion.	(7)
B. Erosion areas present		_
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy	5	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high	flow 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0	0 1,1
-		Total
Remarks		,

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.


	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	2
D. Stream with minimal canopy - full sun in all but a few areas	6)
E. No canopy and no shading	$\widecheck{0}$
Remarks leav 2 post construction	Subtotal 2


VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

Dominant vegetation: □ Trees □ Shrubs □ Grasses □ Weeds/old field □Exotics (kudzu, etc) Score Score A. Riparian zone intact (no breaks) 1. width > 18 meters
1. width > 18 meters
2. width 12-18 meters
3. width 6-12 meters
4. width < 6 meters
B. Riparian zone not intact (breaks)
1. breaks rare
a. width > 18 meters
b. width 12-18 meters
c. width 6-12 meters
d. width < 6 meters
2. breaks common
a. width > 18 meters
b. width 12-18 meters
c. width 6-12 meters
d width < 6 meters
Remarks leav 2 post vestoration Total 3
Page Total 40
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Supplement for Habitat Assessment Field Data Sheet

This side is 45° bank angle.

Site Sketch:

Other comments:	
· · · · · · · · · · · · · · · · · · ·	
	-

3/06 Revision 6

Aycock UT-4

Habitat Assessment Field Data Sheet **Mountain/ Piedmont Streams**

at Unit DWO

TOTAL SCOPE

Biological Assessment Unit, DWQ TOTA	L SCORE 80
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred or upstream direction starting above the bridge pool and the road right-of-way. The segment which is as average stream conditions. To perform a proper habitat evaluation the observer needs to get into the str select the description which best fits the observed habitats and then circle the score. If the observed habitat descriptions, select an intermediate score. A final habitat score is determined by adding the results from	f stream, preferably in an sessed should represent ream. To complete the form, bitat falls in between two n the different metrics.
Stream_ UT to Travis Creek_Location/road: Gibsonville Ossiff(Road Name)Count	iy Alumance
Date 6/15/17 CC# 03030007 Basin Cape Fear Subbasin 0 Observer(s) For information Type of Study: Fish Benthos Basinwide Special Study (Describe)	3-06-02
Observer(s) France Type of Study: Fish Benthos Basinwide Special Study (Describe	:)
Latitude <u>36, 12985</u> Longitude <u>-19, 527165</u> Ecoregion: DMT XP DSlate Belt DTriassic	Basin
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr.)µS/cm p	он
Physical Characterization: Visible land use refers to immediate area that you can see from samp you estimate driving thru the watershed in watershed land use.	ling location - include what
Visible Land Use: 0%Forest %Residential %Ondertiel %Other - Describe:	_% Active Crops
Watershed land use : 🛛 🖾 Agriculture 🗆 Urban 🗖 Animal operations upstream	
Width: (meters) Stream $[5]$ Channel (at top of bank) 2 Stream Depth: (m) $Avg \mathcal{D}_1$ \Box Width variable \Box Large river >25m wide Stream Depth: (m) $Avg \mathcal{D}_1$ Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 10	MaxS
Bank Angle : 45 or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is indicate slope is away from channel. NA if bank is too low for bank angle to matter.) \Box Channelized Ditch	towards mid-channel, < 90°
□ Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sedi □ Recent overbank deposits □Bar development □Buried structures □Ex □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Se Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □ Flow conditions : □Hight □Normal □Low	posed bedrock ewage smell
Turbidity: □Clear ☑ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes)	
Good potential for Wetlands Restoration Project?? ☑YES □NO Details Channel Flow Status	
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed C. Water fills 25-75% of available channel, many logs/snags exposed D. Root mats out of water E. Very little water in channel, mostly present as standing pools	D
Weather Conditions: het, Summer Photos: DN DY Digital D35mm	
Remarks: abundance of eggs on under side of vocks; abu	ndayle of

I. Channel Modification	Score
A. channel natural, frequent bends	5)
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc)
□ Evidence of dredging □Evidence of desnagging=no large woody debris in stream □Banks of uniform shape/hei	
Remarks Subto	otal 5

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

AMOUNT OF REACH FAVO	RABLE F	OR COLONIZA	TION OR COV	/ER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				
No woody vegetation in riparian zone Remarks					Subtota

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Score
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	
1. embeddedness <20%	14
2. embeddedness 20-40%	$(\mathbf{\mu})$
3. embeddedness 40-80%	6
4. embeddedness >80%	2
C. substrate mostly gravel	
1. embeddedness <50%	8
2. embeddedness >50%	4
D. substrate homogeneous	
1. substrate nearly all bedrock	3
2. substrate nearly all sand	3
3. substrate nearly all detritus	2
4. substrate nearly all silt/ clay	1 11
	Subtotal

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	10
b. pools about the same size (indicates pools filling in)	
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	. 0 0
	Subtotal O
🗆 Pool bottom boulder-cobble=hard 🗆 Bottom sandy-sink as you walk 🔟 Silt bottom 🗆 Some pools over v	vader depth
Remarks	

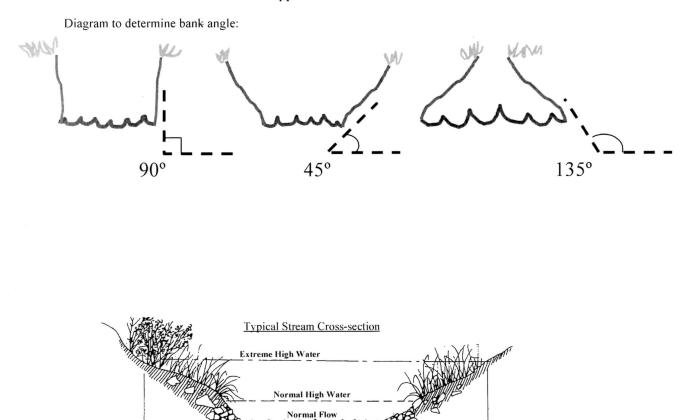
Page Total 40

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffle A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16 12 B. riffle as wide as stream but riffle length is not 2X stream width 14 7 C. riffle not as wide as stream and riffle length is not 2X stream width 10 3	es Infrequent ore
D. riffles absent	
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	Subtotal $ \Psi $
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Bank	_
Score	Score
A. Banks stable	
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion.(7)	\mathcal{O}
B. Erosion areas present	<i>.</i>
1. diverse trees, shrubs, grass; plants healthy with good root systems	6
2. few trees or small trees and shrubs ; vegetation appears generally healthy	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0
5	Total 14
Remarks	

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

, , , , , , , , , , , , , , , , , , ,	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	2
D. Stream with minimal canopy - full sun in all but a few areas	(2)
E. No canopy and no shading	Ō
Remarks Year 2 Post Restavation	Subtotal 2


VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

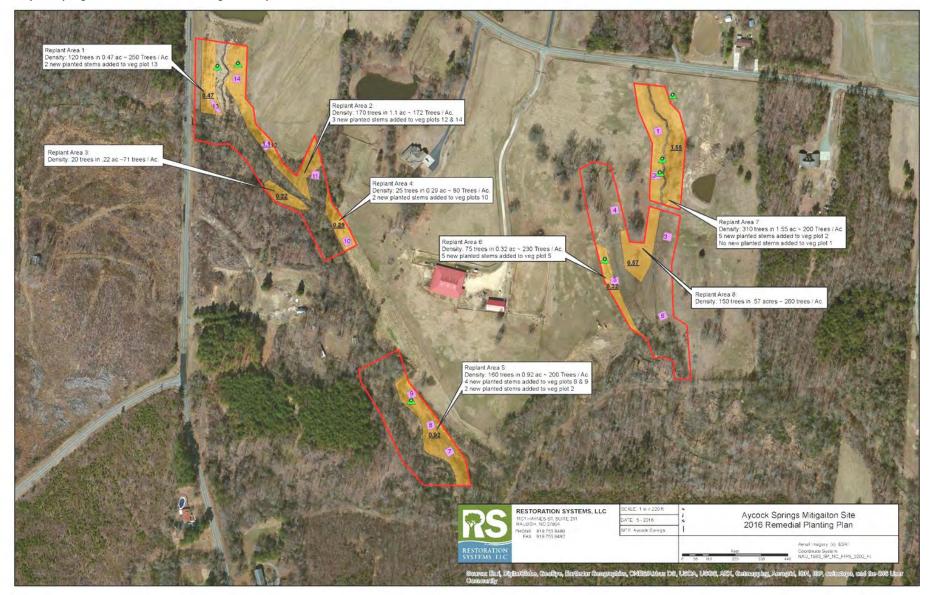
Dominant vegetation: \square Trees \square Shrubs \square Grasses \square Weeds/old field \square Exotics (kudzu, etc)ScoreScoreScoreA. Riparian zone intact (no breaks)1. width > 18 meters	FACE UPSTREAM Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐Exotics (kudzu, etc)	Lft. Bank	Rt. Bank
1. width > 18 meters. 5 5 2. width 12-18 meters. 3 3 3. width 6-12 meters. 2 2 4. width < 6 meters.		Score	Score
2. width 12-18 meters			
3. width 6-12 meters.334. width < 6 meters.		5	5
4. width < 6 meters.22B. Riparian zone not intact (breaks)1. breaks rare44a. width > 18 meters.44b. width 12-18 meters.33c. width 6-12 meters.22d. width < 6 meters.	2. width 12-18 meters	(4)	(4)
B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters		3	3
1. breaks rare44a. width > 18 meters	4. width < 6 meters	2	2
a. width > 18 meters	B. Riparian zone not intact (breaks)		
b. width 12-18 meters.33c. width 6-12 meters.22d. width < 6 meters.	1. breaks rare		
b. width 12-18 meters.33c. width 6-12 meters.22d. width < 6 meters.	a. width > 18 meters	4	4
c. width 6-12 meters		3	3
d. width < 6 meters.		2	2
2. breaks common a. width > 18 meters		1	1
b. width 12-18 meters22c. width 6-12 meters11d. width < 6 meters		-	-
b. width 12-18 meters22c. width 6-12 meters11d. width < 6 meters	a. width > 18 meters	3	3
c. width 6-12 meters.11d. width < 6 meters.		2	2
d. width < 6 meters		1	1
Remarks teal 2 Post Ristovation. Total 3		0	0 -
	Remarks Peak 2 Post PistoVation	т,	otal
Page Total 40			
		Page Tot	tal 40

Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Supplement for Habitat Assessment Field Data Sheet

Stream Width

This side is 45° bank angle.


Site Sketch:

Lower Bank

APPENDIX G REMEDIAL ACTION PLAN

Aycock Springs Stream and Wetland Mitigation Site Remedial Action Update March 3, 2017 NC DMS Contract #5791

Aycock Springs-Remedial Action Plan - Vegetation Update

Map of Replant Areas- green dots indicate approximate location of where photos were taken.

Photo 1: Looking SW. along Replant Area -1

Photo 2: Looking S. in Replant Area 2, just N. of veg. plot 14

Photo Date: 1-13-2017

Photo 3: Looking SE. in Replant Area 4, near veg. plot 9

Photo Date: 1-13-2017

Photo 5: Looking S. in Replant Area 5, N. of veg. plot 5

Photo 4: Looking S. in Replant Area 6, from outside of the easement

Photo Date: 1-13-2017

Aycock Springs-Remedial Action Plan - Vegetation Update

Photo 6 / 7: Live stake establishment on bank in Replant area 6

Photo Date: 1-13-2017

Aycock Springs-Remedial Action Plan Substrate Replacement - Update

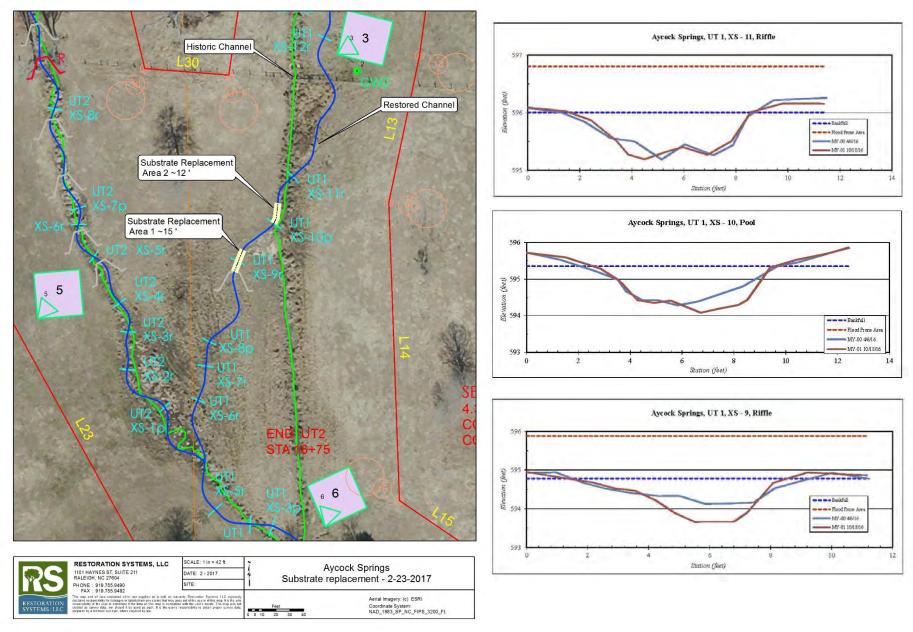


Photo 1: Substrate loss, 6" head-cut at UT 1, XC 9

Photo 2: Pool, upstream of 6" head-cut at UT 1, XC 9 (XC 10 in background)

Photo 3: Substrate replacement at UT 1, XC 9

Photo 3: Substrate loss, upstream riffle of XC 10 (pool)

Photo 4: Substrate replaced, upstream riffle of XC 10 (pool)

Aycock Springs-Remedial Action Plan Substrate Replacement - Update

APPENDIX F INVASIVE SPECIES TREATMENT LOGS

CarSilv - 0397				
Client	Resto	ration Systems		
Project Site	Аусос	k Springs		
Date	04-06	-2017		
Start Time	10:00		End Time	15:30
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	1 of 2
Sky Cover	Cloud	У	Temp (F)	61
Wind Direction	W		Wind Speed	11-15mph
Applicators	Graing	a G Merritt (NC 026-3371 ger Coughtrey (NC 026-34 stian Kimlinger (NC 026-34	612)	
Application Method	Basal	Bark		
Herbicide	Garlor	n® 4 (triclopyr)		
Herbicide Rate (%)	15		Total Concentrate	290 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other				
Other Rate/Amt				
Diluent	Diesel	fuel		
Total Solution	15 gal	lons		
Species Controlled	Privet Multifl	spp. ora Rose		
Area Description	Large	privet downstream		
Additional Comments				

CarSilv - 0464				
Client	Resto	ration Systems		
Project SIte	Аусос	k Springs		
Date	09-05	-2017		
Start Time	9:00		End Time	14:00
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	2 of 2
Sky Cover	Clear		Temp (F)	81
Wind Direction	S		Wind Speed	1-5 mph
Applicators	Graing	a G Merritt (NC 026-33717 ger Coughtrey (NC 026-34 stian Kimlinger (NC 026-34	612)	
Application Method	Foliar	Spray (Backpack)		
Herbicide	Round	dup® Custom (glyphosate)	1	
Herbicide Rate (%)	5		Total Concentrate	78 fl oz
Surfactant or Adjuvant (1)	Hel-fir	e®		
Surfactant/Adjudivant 1 Rate (%)	.5			
Other		Blue Dye		
Other Rate/Amt	1 fl oz			
Diluent	Water			
Total Solution	12 gal	lons		
Species Controlled	Privet Multifl	spp. ora Rose		
Area Description		ajority of the site is clear c small re-sproutes from rec	f invasive species. The privet and ent treatments.	rose present
Additional Comments				

Additional Comments

CarSilv - 0465				
Client	Restor	ration Systems		
Project Site	Аусос	k Srpings		
Date	09-05-2017			
Start Time	14:00		End Time	16:00
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	3 of 3
Sky Cover	Clear		Temp (F)	81
Wind Direction	S		Wind Speed	1-5 mph
Applicators	Graing	a G Merritt (NC 026-33717 Jer Coughtrey (NC 026-340 tian Kimlinger (NC 026-340	512)	
Application Method	Cut and Stump Spray			
Herbicide	Garlon	® 3A (triclopyr)		
Herbicide Rate (%)	50		Total Concentrate	50 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other				
Other Rate/Amt				
Diluent	Water			
Total Solution	100 fl (oz		
Species Controlled	Jap. H Privet	oneysuckle spp.		
		f-Heaven ora Rose		
Area Description	patch		patch of all invasive species listed ft consisting of small specimen. L	
Additional Comments	PDF m	naps. I spoke with Ray Hol	outside of the easement boundarie z and he gave the green light to c n be provided upon request.	-

CarSilv - 0468				
Client	Restorat	tion Systems		
Project SIte	Aycock S	Springs		
Date	09-05-20	017		
Start Time	9:00		End Time	16:00
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	1 of 2
Sky Cover	Clear		Temp (F)	81
Wind Direction	S		Wind Speed	1-5 mph
Applicators	Joshua (G Merritt (NC 026-33717)	
Application Method	Foliar Sp	oray (Backpack)		
Herbicide	Garlon®	3A (triclopyr)		
Herbicide Rate (%)	3		Total Concentrate	8 fl oz
Surfactant or Adjuvant (1)	Hel-fire®	0		
Surfactant/Adjudivant 1 Rate (%)				
Other				
Other Rate/Amt				
Diluent	Water			
Total Solution	2 gallons	5		
Species Controlled	Privet sp Multiflora			
Area Description	Large an	nount of privet in back c	orner of site	
Additional Comments				

CarSilv - 0264				
Client	Restor	ation Systems		
Project Site	Aycock	< Spring		
Date	08-16-	2016		
Start Time	13:00		End Time	17:30
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	2 of 2
Sky Cover	Clear		Temp (F)	100
Wind Direction	SW		Wind Speed	1-5 mph
Applicators		a G Merritt (NC 026-33717 er Coughtrey	")	
Application Method	Cut an	d Stump Spray		
Herbicide	Garlon	® 3A (triclopyr)		
Herbicide Rate (%)	50		Total Concentrate	32 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other				
Other Rate/Amt				
Diluent	Water			
Total Solution	.5 gallo	ons		
Species Controlled	Privet s Multifle	spp. ora Rose		
Area Description		ate. The composed mainly	e easement. The density of invasi / small plants with a few large ste	
Additional Comments				

Additional Comments

CarSilv - 0463					
Client	Restor	ration Systems			
Project SIte	Aycoc	k Srpings			
Date	09-05-	-2017			
Start Time	9:00		End Time	16:00	
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	1 of 3	
Sky Cover	Clear		Temp (F)	81	
Wind Direction	S		Wind Speed	1-5 mph	
Applicators	Joshua	a G Merritt (NC 026-33717	7)		
Application Method	Foliar	Spray (Backpack)			
Herbicide	Garlon	Garlon® 3A (triclopyr)			
Herbicide Rate (%)	3		Total Concentrate	8 fl oz	
		AR			
Surfactant or Adjuvant (1)	Hel-fire				
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%)	Hel-fire				
Surfactant/Adjudivant 1 Rate		Blue Dye			
Surfactant/Adjudivant 1 Rate (%)		Blue Dye			
Surfactant/Adjudivant 1 Rate (%) Other	.5	Blue Dye			
Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt	.5 1 fl oz	Blue Dye			
Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt Diluent	.5 1 fl oz Water 2 gal Callery Privet	Blue Dye z			
Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt Diluent Total Solution	.5 1 fl oz Water 2 gal Callery Privet Multiflo	Blue Dye z / Pear spp. ora Rose	f invasive species. The privet and ent treatments.	rose present	

CarSilv - 0348				
Client	Restor	ration Systems		
Project Site	Аусос	k Springs		
Date	10-28-	2016		
Start Time	8:30		End Time	16:00
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	1 of 2
Sky Cover	Partly	Cloudy	Temp (F)	71
Wind Direction	NNW		Wind Speed	6-10 mph
Applicators		er Coughtrey (NC 026-346 tian Kimlinger (NC 026-34	,	
Application Method	Basal	Bark		
Herbicide	Garlon	® 4 (triclopyr)		
Herbicide Rate (%)	15		Total Concentrate	190 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other		Blue Dye		
Other Rate/Amt	1 fl oz			
Diluent	Diesel	fuel		
Total Solution	10 gall	lons		
	Privet			
Species Controlled	Multific	ora Rose		
Species Controlled Area Description	Perfor		site. The previous treatment was and missed plants.	effective. This

CarSilv - 0267				
Client	Restor	ration Systems		
Project SIte	Аусос	k Spring		
Date	08-17-	-2016		
Start Time	7:00		End Time	13:30
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	3 of 3
Sky Cover	Clear		Temp (F)	100
Wind Direction	S		Wind Speed	1-5 mph
Applicators	Joshu	a G Merritt (NC 026-33717	7)	
Application Method	Basal	Bark		
Herbicide	Garlon	n® 4 (triclopyr)		
Herbicide Rate (%)	20		Total Concentrate	300 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other		Blue Dye		
Other Rate/Amt	1 fl oz			
Diluent	Diesel	fuel		
Total Solution	12 gal	lons		
Species Controlled	Privet Tree-o	spp. ıf-Heaven		
	Multifle Sweet	ora Rose Gum		
Area Description			e easement. The density of invasi y small plants with a few large ste	
	throug			-
Additional Comments				

CarSilv - 0265			
Client	Restoration Systems		
Project SIte	Aycock Spring		
Date	08-17-2016		
Start Time	7:30	End Time	13:30
Only PAL for Site for This Day?	No	If NO, this is PAL # of ##	1 of 3
Sky Cover	Clear	Temp (F)	97
Wind Direction	S	Wind Speed	1-5 mph
Applicators	Joshua G Merritt (NC 026-33717 Grainger Coughtrey Sebastian Kimlinger	7)	
Application Method	Cut and Stump Spray		
Herbicide	Garlon® 3A (triclopyr)		
Herbicide Rate (%)	50	Total Concentrate	128 fl oz
Surfactant or Adjuvant (1)			
Surfactant/Adjudivant 1 Rate (%)			
Other			
Other Rate/Amt			
Diluent	Water		
Total Solution	2 gallons		
Total Solution Species Controlled	2 gallons Callery Pear Privet spp. Multiflora Rose		
	Callery Pear Privet spp. Multiflora Rose Treated the up stream area of th	e easement. The density of invasi y small plants with a few large ster	

CarSilv - 0469				
Client	Restor	ation Systems		
Project SIte	Aycocl	k Springs		
Date	09-05-	2017		
Start Time	9:00		End Time	16:00
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	2 of 2
Sky Cover	Clear		Temp (F)	81
Wind Direction	S		Wind Speed	1-5 mph
Applicators	Graing	a G Merritt (NC 026-33717 er Coughtrey (NC 026-346 tian Kimlinger (NC 026-346	612)	
Application Method	Foliar S	Spray (Backpack)		
Herbicide	Refuge	e® (glyphosate)		
Herbicide Rate (%)	5		Total Concentrate	78 fl oz
Surfactant or Adjuvant (1)	Hel-fire	e®		
Surfactant/Adjudivant 1 Rate (%)	.5			
Other				
Other Rate/Amt				
Diluent	Water			
Total Solution	12 gall	ons		
Species Controlled	Privet s Multifle	spp. ora Rose		
Area Description	Large a stream	-	orner of site, some small invasive	s near the
Additional Comments				

CarSilv - 0349					
Client	Restor	Restoration Systems			
Project SIte	Аусос	k Springs			
Date	10-28-	-2016			
Start Time	14:00		End Time	16:00	
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	2 of 2	
Sky Cover	Clear		Temp (F)	71	
Wind Direction	NNW		Wind Speed	6-10 mph	
Applicators		er Coughtrey (NC 026-346 tian Kimlinger (NC 026-346			
Application Method	Foliar	Spray (Backpack)			
Herbicide	Roundup® Custom (glyphosate)				
Herbicide Rate (%)	3		Total Concentrate	16 fl oz	
Surfactant or Adjuvant (1)	Hel-fir	e®			
Surfactant/Adjudivant 1 Rate (%)	.5				
Other		Blu Dye			
Other Rate/Amt	1 fl oz				
Diluent	Water				
Total Solution	4 gallo	ons			
Species Controlled	Privet Multifle	spp. ora Rose			
Area Description		treated saplings that were ved since last treatment.	too small to basal bark. Overall th	ne site has	
Additional Comments					

CarSilv - 0398					
Client	Resto	Restoration Systems			
Project SIte	Aycock Springs				
Date	04-06	-2017			
Start Time	12:30		End Time	14:30	
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	2 of 2	
Sky Cover	Cloud	у	Temp (F)	61	
Wind Direction	W		Wind Speed	11-15mph	
Applicators	Sebas	tian Kimlinger (NC 026-34	613)		
Application Method	Foliar	Spray (Backpack)			
Herbicide	Round	lup® Custom (glyphosate)			
Herbicide Rate (%)	5		Total Concentrate	20 fl oz	
Surfactant or Adjuvant (1)	Hel-fir	e®			
Surfactant/Adjudivant 1 Rate (%)	.5				
Other					
Other Rate/Amt					
Diluent	Water				
Total Solution	3 gallo	ons			
Species Controlled	Privet Multifl	spp. ora Rose			
Area Description					

Additional Comments

CarSilv - 0263					
Client	Restoration Systems				
Project SIte	Aycock Springs				
Date	08-16-2016				
Start Time	15:00	End Time	17:30		
Only PAL for Site for This Day?	No	If NO, this is PAL # of ##	1 of 2		
Sky Cover	Clear	Temp (F)	100		
Wind Direction	SW	Wind Speed	1-5 mph		
Applicators	Joshua G Merritt (NC 026-33717) Grainger Coughtrey (NC 026-34612) Sebastian Kimlinger (NC 026-34613)				
Application Method	Basal Bark				
Herbicide	Garlon® 4 (triclopyr)				
Herbicide Rate (%)	20	Total Concentrate	32 fl oz		
Surfactant or Adjuvant (1)					
Surfactant/Adjudivant 1 Rate (%)					
Other	Blue Dye				
Other Rate/Amt	1 fl oz				
Diluent	Diesel fuel				
Total Solution	2 gallons				
Species Controlled	Privet spp. Multiflora Rose				
Area Description	Treated the up stream area of the easement. The density of invasive were moderate. The composed mainly small plants with a few large stems spread throughout.				
Additional Comments					

CarSilv - 0266						
Client	Restoration Systems					
Project SIte	Aycock Spring					
Date	08-17-2016					
Start Time	7:00		End Time	12:00		
Only PAL for Site for This Day?		No	If NO, this is PAL # of ##	2 of 3		
Sky Cover	Clear		Temp (F)	97		
Wind Direction	S		Wind Speed	1-5 mph		
Applicators	Joshua G Merritt (NC 026-33717) Grainger Coughtrey (NC 026-34612) Sebastian Kimlinger (NC 026-34613)					
Application Method	Foliar Spray (Backpack)					
Herbicide	Garlon® 3A (triclopyr)					
Herbicide Rate (%)	3		Total Concentrate	4 fl oz		
Surfactant or Adjuvant (1)	Hel-fire®					
Surfactant/Adjudivant 1 Rate (%)	0.5					
Other						
Other Rate/Amt						
Diluent	Water					
Total Solution	1 gallon					
Species Controlled	Privet spp.					
Area Description	Treated small privet (waste high and lower.)Treated the up stream area of the easement. The density of invasive were moderate. The composed mainly small plants with a few large stems spread throughout.					
Additional Comments						